Norbadione A

Norbadione A is a pigment found in the bay bolete mushroom (Boletus badius). A polyphenol, norbadione A is related to a family of mushroom pigments known as pulvinic acids.[1] The molecule has also been reported as a potassium salt from the mushrooms Pisolithus tinctorius (horse dung fungus)[2] and Chalciporus piperatus.[3]

Norbadione A
Names
IUPAC name
(2E,2E)-2,2'-[(8-Hydroxy-2-oxo-2H-naphtho[1,8-bc]furan-4,6-diyl)bis(5-hydroxy-3-oxo-4-furanyl-2-ylidene)]bis[(4-hydroxyphenyl)acetic acid]
Identifiers
3D model (JSmol)
Properties
C35H18O15
Molar mass 678.50842 gmol−1
Appearance red needles
Density 1.902 g/cm3
Melting point 300 °C (572 °F; 573 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Properties

Norbadione A has seven acid-base functional groups, among which are two enolic and two carboxylic acid moieties.[4] These functional groups confer water-solubility to the molecule. It selectively complexes cesium cations (Cs+),[5] with an efficiency comparable to that of some calixarenes or crown ethers.[4] It has been investigated for its ability to provide a protective effect against the damaging effects of ionizing radiation, an effect attributed to its ability to protect DNA-related targets from irradiation.[6] Tests with cell cultures and mice show that although it has some protective effect, it is toxic to cells in higher doses.[7] A diverse array of synthetic derivatives of norbadione A has been created to explore the effect of structure on antioxidant properties and cytotoxicity.[8] A series of alkali chelators based on the structure of norbadione A has been reported.[9] The intramolecular protonation process has been determined. There is a pH-dependent Z to E isomer switch that occurs in both pulvinate moieties,[10] which yields four stereoisomeric forms (E/E, E/Z, Z/Z, Z/E). These stereoisomers may have a widely differing ability to form complexes with Cs+ in solution.[6]

Synthesis

Bourdreux and colleagues reported a total synthesis of norbadione A in 2008. The technique uses a regioselective Diels–Alder reaction and a double Suzuki-Miyaura cross-coupling.[11]

gollark: Hold on while I find some subscripts.
gollark: The hydrogen can be burned cleanly, which is nice.
gollark: Oh, and you can't convert carbon dioxide and water into oxygen and carbon, it'd be oxygen, carbon and hydrogen.
gollark: Also, you might be able to get the carbon out as diamonds using whatever magic molecular reorganization thing you're using to do this, in which case it doesn't need to be buried and we can just use ridiculous volumes of diamond as a structural material.
gollark: *Can* you efficiently just convert carbon dioxide/water back into oxygen/carbon? I mean, the whole reason we do it the other way round is the fact that a lot of energy is released.

References

  1. Aumann DC, Clooth G, Steffan B, Steglich W (1989). "Complexation of cesium-137 by the cap pigments of the bay boletus (Xerocomus badius)". Angewandte Chemie International Edition in English. 28 (4): 453–454. doi:10.1002/anie.198904531.
  2. Thompson RH (1997). Naturally Occurring Quinones IV. Springer. p. 282. ISBN 978-0-7514-0248-3.
  3. Yannai S. (2013). Dictionary of Food Compounds. CRC Press. p. 1416. ISBN 978-1-4200-8351-4.
  4. Korovitch A, Mulon JB, Souchon V, Leray I, Valeur B, Mallinger A, Nadal B, Le Gall T, Lion C, Ha-Duong NT, El Hage Chahine JM (2010). "Norbadione A: kinetics and thermodynamics of cesium uptake in aqueous and alcoholic media". Journal of Physical Chemistry B. 114 (39): 12655–12665. doi:10.1021/jp1060232. PMID 20831226.
  5. Kuad P, Schurhammer R, Maechling C, Antheaume C, Mioskowski C, Wipff G, Spiess B (2009). "Complexation of Cs+, K+ and Na+ by norbadione A triggered by the release of a strong hydrogen bond: nature and stability of the complexes". Physical Chemistry Chemical Physics. 11 (44): 10299–10310. doi:10.1039/b912518c. PMID 19890513.
  6. Schurhammer R, Diss R, Spiess B, Wipff G (2007). "Conformational and Cs+ complexation properties of norbadione-A: A molecular modeling study". Physical Chemistry Chemical Physics. 10 (4): 495–505. doi:10.1039/B712836C.
  7. Le Roux A, Josset E, Benzina S, Nadal B, Desage-El Murr M, Heurtaux B, Taran F, Denis J-M, Le Gall T, Meunier S, Bischoff P (2012). "Evaluation of the radioprotective potential of the polyphenol norbadione A". Letters in Drug Design & Discovery. 9 (1): 48–53. doi:10.2174/157018012798192900.
  8. Habrant D, Poigny S, Ségur-Derai M, Brunel Y, Heurtaux B, Le Gall T, Strehle A, Saladin R, Meunier S, Mioskowski C, Wagner A (2009). "Evaluation of antioxidant properties of monoaromatic derivatives of pulvinic acids". Journal of Medicinal Chemistry. 52 (8): 2454–2464. doi:10.1021/jm801500h. PMID 19309153.
  9. Korovitch A, Le Roux A, Barbault F, Hémadi M, Ha-Duong N-T, Lion C, Wagner A, El Hage Chahine J-M (2013). "A new series of Cs+, K+ and Na+ chelators: Synthesis, kinetics, thermodynamics and modeling". Inorganica Chimica Acta. 394: 45–57. doi:10.1016/j.ica.2012.08.009.
  10. Kuad P, Borkovec M, Desage-El Murr M, Le Gall T, Mioskowski C, Spiess B (2005). "Inframolecular protonation process of norbadione A: Influence of the ionic environment and stereochemical consequences". Journal of the American Chemical Society. 127 (4): 1323–1333. doi:10.1021/ja0483185. PMID 15669874.
  11. Bourdreux Y, Nowaczyk S, Billaud C, Mallinger A, Willis C, Murr MD, Toupet L, Lion C, Gall TL, Mioskowski C (2008). "Total synthesis of norbadione A". Journal of Organic Chemistry. 73 (1): 22–26. doi:10.1021/jo702106u. PMID 18052074.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.