Nilpotence theorem

In algebraic topology, the nilpotence theorem gives a condition for an element of the coefficient ring of a ring spectrum to be nilpotent, in terms of complex cobordism. It was conjectured by Douglas Ravenel (1984) and proved by Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith (1988).

Nishida's theorem

Goro Nishida (1973) showed that elements of positive degree of the homotopy groups of spheres are nilpotent. This is a special case of the nilpotence theorem.

gollark: To find the first non-ad link.
gollark: Ah, inevitably.
gollark: It even does replies.
gollark: ++search dictionary apioforms
gollark: ++search apioforms

References

  • Devinatz, Ethan S.; Hopkins, Michael J.; Smith, Jeffrey H. (1988), "Nilpotence and stable homotopy theory. I", Annals of Mathematics, Second Series, 128 (2): 207–241, doi:10.2307/1971440, JSTOR 1971440, MR 0960945
  • Nishida, Goro (1973), "The nilpotency of elements of the stable homotopy groups of spheres", Journal of the Mathematical Society of Japan, 25 (4): 707–732, doi:10.2969/jmsj/02540707, MR 0341485.
  • Ravenel, Douglas C. (1984), "Localization with respect to certain periodic homology theories", American Journal of Mathematics, 106 (2): 351–414, doi:10.2307/2374308, ISSN 0002-9327, JSTOR 2374308, MR 0737778 Open online version.
  • Ravenel, Douglas C. (1992), Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, 128, Princeton University Press, ISBN 978-0-691-02572-8, MR 1192553

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.