ns (simulator)

ns (from network simulator) is a name for a series of discrete event network simulators, specifically ns-1, ns-2, and ns-3. All are discrete-event computer network simulators, primarily used in research[2] and teaching.

ns
Initial releaseJune 30, 2008 (2008-06-30)[1]
Stable release
3.31 / June 28, 2020 (2020-06-28)
Repository
Written inC++ (core) Python (bindings)
Operating systemLinux, FreeBSD, macOS
PlatformIA-32, x86-64
TypeNetwork simulator
Websitewww.nsnam.org

History

ns-1

The first version of ns, known as ns-1, was developed at Lawrence Berkeley National Laboratory (LBNL) in the 1995-97 timeframe by Steve McCanne, Sally Floyd, Kevin Fall, and other contributors. This was known as the LBNL Network Simulator, and derived in 1989 from an earlier simulator known as REAL by S. Keshav.

ns-2

Ns-2 began as a revision of ns-1. From 1997-2000, ns development was supported by DARPA through the VINT project at LBL, Xerox PARC, UCB, and USC/ISI. In 2000, ns-2 development was supported through DARPA with SAMAN and through NSF with CONSER, both at USC/ISI, in collaboration with other researchers including ACIRI.

Ns-2 incorporates substantial contributions from third parties, including wireless code from the UCB Daedelus and CMU Monarch projects and Sun Microsystems.

ns-3

In 2006, a team led by Tom Henderson, George Riley, Sally Floyd, and Sumit Roy, applied for and received funding from the U.S. National Science Foundation (NSF) to build a replacement for ns-2, called ns-3. This team collaborated with the Planete project of INRIA at Sophia Antipolis, with Mathieu Lacage as the software lead, and formed a new open source project.

In the process of developing ns-3, it was decided to completely abandon backward-compatibility with ns-2. The new simulator would be written from scratch, using the C++ programming language. Development of ns-3 began in July 2006.

Current status of the three versions is:

  • ns-1 development stopped when ns-2 was founded. It is no longer developed nor maintained.
  • ns-2 development stopped around 2010. It is no longer developed nor maintained.
  • ns-3 is actively being developed and maintained.

Design

ns-3 is built using C++ and Python with scripting capability. The ns library is wrapped by Python thanks to the pybindgen library which delegates the parsing of the ns C++ headers to castxml and pygccxml to automatically generate the corresponding C++ binding glue. These automatically-generated C++ files are finally compiled into the ns Python module to allow users to interact with the C++ ns models and core through Python scripts. The ns simulator features an integrated attribute-based system to manage default and per-instance values for simulation parameters.

Simulation workflow

The general process of creating a simulation can be divided into several steps:

  1. Topology definition: To ease the creation of basic facilities and define their interrelationships, ns-3 has a system of containers and helpers that facilitates this process.
  2. Model development: Models are added to simulation (for example, UDP, IPv4, point-to-point devices and links, applications); most of the time this is done using helpers.
  3. Node and link configuration: models set their default values (for example, the size of packets sent by an application or MTU of a point-to-point link); most of the time this is done using the attribute system.
  4. Execution: Simulation facilities generate events, data requested by the user is logged.
  5. Performance analysis: After the simulation is finished and data is available as a time-stamped event trace. This data can then be statistically analysed with tools like R to draw conclusions.
  6. Graphical Visualization: Raw or processed data collected in a simulation can be graphed using tools like Gnuplot, matplotlib or XGRAPH.
gollark: +>eval_silent insult(["beekeeping"]).then(x=>m.channel.send(x))
gollark: "go produce a world-renowned piece of artwork"
gollark: "go make a POST request using HTTP/1.0"
gollark: "go upload your consciousness into the osmarks.tk mainframe"
gollark: Epicbot insult idea: "go solve a differential equation".

See also

References

  1. Henderson, Tom (2012-06-09). "upcoming ns-3.1 release" (Mailing list). ns-3 GSoC 2015 students. Archived from the original on 2012-03-27. Retrieved 2013-05-31.
  2. "Archived copy". Archived from the original on 2013-02-22. Retrieved 2012-08-30.CS1 maint: archived copy as title (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.