Mongolian numerals

Mongolian numerals are numerals developed from Tibetan numerals and used in conjunction with the Mongolian and Clear script.[1][2]:28 They are still used on Mongolian tögrög banknotes.

Numerals reading "2013" in Ulaanbaatar
Example use of the number 16 on the first line of John 3:16

The main sources of reference for Mongolian numerals are mathematical and philosophical works of Janj khutugtu A.Rolbiidorj (1717-1766) and D.Injinaash (1704-1788). Rolbiidorj exercises with numerals of up to 1066, the last number which he called “setgeshgui” or “unimaginable” referring to the concept of infinity. Injinaash works with numerals of up to 1059. Of these two scholars, the Rolbiidorj’s numerals, their names and sequencing are commonly accepted and used today, for example, in the calculations and documents pertaining to the Mongolian Government budget.

Base numbers

Numbers from 1 to 9 are referred to as "dan", meaning "simple".

# Mongolian numeralsTibetan numerals
0
1
2
3
4
5
6
7
8
9

Extended numbers

NumberName in MongolianTransliteration
10АравтAravt (ten)
102ЗуутDzuut (hundred)
103МянгатMyangat (thousand)
104ТүмтTümt
105БумтBumt
106СаятSayat (million)
107ЖивааJivaa
108ДүнчүүрDünchüür
109ТэрбумTerbum (billion)
1010Их тэрбумIkh terbum
1011НаядNayad
1012Их наядIkh nayad
1013Маш дэлгэрмэлMash delgermel
1014Их маш дэлгэрмэлIkh mash delgermel
1015ТунамалTunamal
1016Их тунамалIkh tunamal
1017ИнгүүмэлIngüümel
1018Их ингүүмэлIkh ingüümel
1019ХямралгүйKhyamralgüi
1020Их хямралгүйIkh Khyamralgüi
1021ЯлгаруулагчYalgaruulagch
1022Их ялгаруулагчIkh yalgaruulagch
1023Өөр дээрÖör deer
1024Их өөр дээрIkh öör deer
1025Хөөн удирдагчKhöön udirdagch
1026Их хөөн удирдагчIkh khöön udirdagch
1027Хязгаар үзэгдэлKhyadzgaar üdzegdel
1028Их хязгаар үзэгдэлIkh khyadzgaar üdzegel
1029Шалтгааны зүйлShaltgaany dzüyl
1030Их шалтгааны зүйлIkh shaltgaany dzüyl
1031Үзэсгэлэн гэрэлтÜdzesgelen gerelt
1032Их үзэсгэлэн гэрэлтIkh üdzesgelen gerelt
1033ЭрхтErkht
1034Их эрхтIkh Erkht
1035Сайтар хүргэсэнSaytar khürgesen
1036Их сайтар хүргэсэнIkh saytar khürgesen
1037Олон одохOlon odokh
1038Их олон одохIkh olon odokh
1039Живэх тоосон билэгJivekh tooson bileg
1040Их живэх тоосон билэгIkh jivekh tooson bileg
1041Билэг тэмдэгBilet temdeg
1042Их билэг тэмдэгIkh bilet temdeg
1043Хүчин нөхөрKhüchin nökhör
1044Их хүчин нөхөрIkh khüchin nökhör
1045Тохио мэдэхүйTokhio medekhüi
1046Их тохио мэдэхүйIkh tokhio medekhüi
1047Тийн болсонTiin bolson
1048Их тийн болсонIkh tiin bolson
1049Хүчин нүдKhüchin nud
1050Их хүчин нүдIkh khüchin nüd
1051АсрахуйAsrakhüi
1052Их асрахуйIkh asrakhüi
1053НигүүлсэнгүйNigüülsengüi
1054Их нигүүлсэнгүйIkh nigüülsengüi
1055БаясгалангуйBayasgalangüi
1056Их баясгалангуйIkh bayasgalangüi
1057ТоолшгүйToolshgüi
1058ХэмжээлшгүйKhemjeelshgüi
1059ЦаглашгүйTsaglashgüi
1060ӨгүүлшгүйÖgüülshgüi
1061ХэрэглэшгүйKheregleshgüi
1062Үйлдэж дуусашгүйÜildej duusashgüi
1063ҮлэшгүйÜleshgüi
1064ХирлэшгүйKhirleshgüi
1065Үлэж дуусашгүйÜlej duusashgüi
1066СэтгэшгүйSetgeshgüi
gollark: Yet according to you if I wrote it -6x² + 12x = 0 the answers would be different.
gollark: Addition is commutative. Switching the order of the terms right cannot possibly change the solutions to the quadratic.
gollark: It is not. Again, a isn't "the first thing" but "the x^2 thing".
gollark: That is also true but not what I mean here.
gollark: This is called commutativity.

References

  1. Chrisomalis, Stephen (2010). Numerical Notation: A Comparative History. Cambridge University Press. ISBN 9780521878180.
  2. "The Unicode® Standard Version 10.0 – Core Specification: South and Central Asia-II" (PDF). Unicode.org. Retrieved 3 December 2017.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.