Miniature Exoplanet Radial Velocity Array

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a ground-based robotic dedicated exoplanet observatory. The facility is an array of small-aperture robotic telescopes outfitted for both photometry and high-resolution Doppler spectroscopy located at the U.S. Fred Lawrence Whipple Observatory at Mt. Hopkins, Arizona.[1][2][3][4] The project's principal investigator is the American astronomer Jason Eastman.[1] The telescopes were manufactured by PlaneWave Instruments.

Miniature Exoplanet Radial Velocity Array
One of the individual telescopes of the Minerva project
Part ofFred Lawrence Whipple Observatory 
Location(s)Mount Hopkins, Arizona
Coordinates31°41′18″N 110°53′07″W
Telescope styleastronomical survey
optical telescope 
Websitewww.cfa.harvard.edu/minerva/
Location of Miniature Exoplanet Radial Velocity Array
Related media on Wikimedia Commons
A diagram of one of the project's enclosures with two telescopes

Science objectives

The primary science goal of MINERVA is to discover Earth-like planets in close-in (less than 50-day) orbits around nearby stars, and super-Earths (3-15 times the mass of Earth) in the habitable zones of the closest Sun-like stars. The secondary goal is to look for transits (eclipses) of known and newly discovered extrasolar planets. The unique design of the MINERVA observatory allows the pursuit of both goals simultaneously.

Specifications and status

  • Telescopes: Four PlaneWave CDK700, 0.7m telescopes within 2 custom telescope enclosures designed by LCOGT engineers. One MINERVA-Red telescope
  • Cameras: 2k × 2k back illuminated CCD with 15 µm pixels offering > 20’ f.o.v.
  • Spectrograph: Stabilized, R = 75,000 echelle spectrograph with iodine cell for precise radial velocimetry designed by KiwiStar Optics (a business unit of Callaghan Innovation; a New Zealand government-owned Crown entity).
  • Status: Full photometric science operations began in May 2015 at FLWO. The spectrograph was installed Dec 2015.

MINERVA-Red

MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm (where M-dwarfs are brightest) with a robotic 0.7 meter telescope. It uses a Fabry-Perot etalon and U/Ne lamp for wavelength calibration.[5][6]

gollark: I imagine Gibson is repeatedly facedesking or something right now.
gollark: >>backups
gollark: tio!debug
gollark: Yes, thanks TIOpy?
gollark: ```python#!/usr/bin/env python3import subprocess, os, os.path, sys, argparse, datetimetimestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")print(timestamp)parser = argparse.ArgumentParser(description="do backups, probably")parser.add_argument("--encrypt", "-E", help="store backup in encrypted folder (please make sure it's unlocked)", action="store_true")parser.add_argument("--no-incremental", "-n", help="don't do incremental backup", action="store_true")parser.add_argument("--save_as", "-a", help="back up under different name")parser.add_argument("dir", help="directory to backup")args = parser.parse_args()incremental = not args.no_incrementalprint(args)srcdir = os.path.abspath(args.dir)outdir = os.path.join(os.path.dirname(os.path.abspath(sys.argv[0])), "encrypted/backups" if args.encrypt else "backups")safepath = (args.save_as or srcdir).lstrip("/").replace("/", "-").replace("_", "-")outpath = os.path.join(outdir, f"{safepath}_{timestamp}{'_incr' if incremental else ''}.tar.zst")snapshot = os.path.join(outdir, f"{safepath}.snapshot")snapargs = ["-g", snapshot] if incremental else []print(srcdir, outdir, outpath)tarproc = subprocess.Popen(["tar", "-c", "-v", "-C", os.path.dirname(srcdir), os.path.basename(srcdir)] + snapargs, stdout=subprocess.PIPE)zstproc = subprocess.Popen(["zstd", "-10", "-T0", "-o", outpath], stdin=tarproc.stdout)def assert_proc(x): if x.wait() != 0: print(f"warning: {x.args} failed")assert_proc(tarproc)assert_proc(zstproc)```efficiency™

See also

  • List of extrasolar planets

Other exoplanet search projects

References

  1. "A dedicated Exoplanet Oservatory". Harvard. 3 February 2016. Retrieved 3 February 2016.
  2. Gudmundur Stefansson (26 December 2014). "MINERVA: MINiature Exoplanet Radial Velocity Array". astrobites. Retrieved April 2016. Check date values in: |access-date= (help)
  3. Kristina Hogstrom. "MINERVA: Using Small, Fully Robotic Telescopes to Search for Habitable-Zone Exoplanets". NASA. Retrieved April 2016. Check date values in: |access-date= (help)
  4. "Earth-hunting, guerilla style". Planetquest JPL/NASA. 6 September 2012. Retrieved April 2016. Check date values in: |access-date= (help)
  5. Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley (2017). "MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars". American Astronomical Society Meeting Abstracts #229. 229: 146.09. Bibcode:2017AAS...22914609S.CS1 maint: uses authors parameter (link) MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars
  6. https://video.ias.edu/jointastro/2015/1006-CullenBlake


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.