MiniGrail

MiniGRAIL is a type of Resonant Mass Antenna,[1] which is a massive sphere that used to detect gravitational waves. The MiniGRAIL is the first such detector to use a spherical design. It is located at Leiden University in the Netherlands. The project is being managed by the Kamerlingh Onnes Laboratory.[2] A team from the Department of Theoretical Physics of the University of Geneva, Switzerland, is also heavily involved.

MiniGrail
Location(s)Netherlands
OrganizationLeiden University 
Telescope stylegravitational-wave observatory 
Websitewww.minigrail.nl

Gravitational waves are a type of radiation that is emitted by objects that have mass and are undergoing acceleration. The strongest sources of gravitational waves are expected to be compact objects such as neutron stars and black holes. This detector may be able to detect certain types of instabilities in rotating single and binary neutron stars, and the merger of small black holes or neutron stars.[3]

Design

A spherical design has the benefit of being able to detect gravitational waves arriving from any direction, and it is sensitive to polarization.[4] When gravitation waves with frequencies around 3,000 Hz pass through the MiniGRAIL ball, it will vibrate with displacements on the order of 10−20 m.[5] For comparison, the cross-section of a single proton (the nucleus of a hydrogen atom), is 10−15 m (1 fm).[6]

To improve sensitivity, the detector was intended to operate at a temperature of 20 mK.[2] The original antenna for the MiniGRAIL detector was a 68 cm diameter sphere made of an alloy of copper with 6% aluminium. This sphere had a mass of 1,150 kg and resonated at a frequency of 3,250 Hz. It was isolated from vibration by seven 140 kg masses. The bandwidth of the detector was expected to be ±230 Hz.[3]

During the casting of the sphere, a crack appeared that reduced the quality to unacceptable levels. It was replaced by a 68 cm sphere with a mass of 1,300 kg. This was manufactured by ItalBronze in Brazil. The larger mass lowered the resonant frequencies by about 200 Hz.[7] The sphere is suspended from stainless steel cables to which springs and masses are attached to dampen vibrations. Cooling is accomplished using a dilution refrigerator.[8]

Tests at temperatures of 5 K showed the detector to have a peak strain sensitivity of 1.5 × 10−20 Hz½ at a frequency of 2942.9 Hz. Over a bandwidth of 30 Hz, the strain sensitivity was more than 5 × 10−20 Hz½. This sensitivity is expected to improve by an order of magnitude when the instrument is operating at 50 mK.[4]

A similar detector named "Mario Schenberg" is located in São Paulo. The co-operation of the detectors strongly increase the chances of detection by looking at coincidences.[9]

gollark: The idea of a "ControversialEsolangs" for that probably wouldn't work well for various reasons, including the difficulty of moving active conversations, cognitive overhead of switching and lots of overhead deciding when to switch, a smaller set of people there even if they could otherwise participate interestingly, and somewhat more difficult-to-express issues like, er, selection effects.
gollark: I think it's a nice-to-have property but not worth sacrificing much else for.
gollark: You can see when it is *happening*, if you happen to be active, and ignore it for a bit.
gollark: You can just mute them *when* discomforting things happen, or possibly mute <#348702212110680064> if you mostly care about esolangs.
gollark: See, I was halfway through writing about why that wasn't a good solution.

References

  1. Schutz , Bernard (2009-05-14). A First Course in General Relativity (2nd ed.). Cambridge. pp. 214–220. ISBN 978-0521887052.
  2. de Waard, A; et al. (2003). "MiniGRAIL, the first spherical detector". Classical and Quantum Gravity. 20 (10): S143–S151. Bibcode:2003CQGra..20S.143D. doi:10.1088/0264-9381/20/10/317.
  3. Van Houwelingen, Jeroen (2002-06-24). "Development of a superconducting thin-film Nb-coil for use in the MiniGRAIL transducers" (PDF). Leiden University. pp. 1–17. Retrieved 2009-09-16.
  4. Gottardi, L.; De Waard, A.; Usenko, O.; Frossati, G.; Podt, M.; Flokstra, J.; Bassan, M.; Fafone, V.; et al. (November 2007). "Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5K". Physical Review D. 76 (10): 102005.1–102005.10. arXiv:0705.0122. Bibcode:2007PhRvD..76j2005G. doi:10.1103/PhysRevD.76.102005.
  5. Bruins, Eppo (2004-11-26). "Listen, two black holes are clashing!". innovations-report. Retrieved 2009-09-16.
  6. Ford, Kenneth William (2005). The quantum world: quantum physics for everyone. Harvard University Press. p. 11. ISBN 0-674-01832-X.
  7. de Waard, A.; et al. (2005). "MiniGRAIL progress report 2004". Classical and Quantum Gravity. 22 (10): S215–S219. Bibcode:2005CQGra..22S.215D. doi:10.1088/0264-9381/22/10/012.
  8. de Waard, A.; et al. (March 2004). "Cooling down MiniGRAIL to milli-Kelvin temperatures". Classical and Quantum Gravity. 21 (5): S465–S471. Bibcode:2004CQGra..21S.465D. doi:10.1088/0264-9381/21/5/012.
  9. Frajuca, Carlos; et al. (December 2005). "Resonant transducers for spherical gravitational wave detectors" (PDF). Brazilian Journal of Physics. 35 (4b): 1201–1203. Bibcode:2005BrJPh..35.1201F. doi:10.1590/S0103-97332005000700050.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.