Microspore

Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes.[1] The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspores are structures that are part of the alternation of generations in many seedless vascular cryptogams, all gymnosperms and all angiosperms. Plants with heterosporous life cycles using microspores and megaspores arose independently in several plant groups during the Devonian period.[2] Microspores are haploid, and are produced from diploid microsporocytes by meiosis.[3]

Microscopic photo of spores (in red) of Selaginella. The large three spores at the top are megaspores whereas the numerous smaller red spores at the bottom are microspores.

Morphology

The microspore has three different types of wall layers. The outer layer is called the perispore, the next is the exospore, and the inner layer is the endospore. The perispore is the thickest of the three layers while the exospore and endospore are relatively equal in width.[4]

Seedless vascular plants

In heterosporous seedless vascular plants, modified leaves called microsporophylls bear microsporangia containing many microsporocytes that undergo meiosis, each producing four microspores. Each microspore may develop into a male gametophyte consisting of a somewhat spherical antheridium within the microspore wall. Either 128 or 256 sperm cells with flagella are produced in each antheridium.[3] The only heterosporous ferns are aquatic or semi-aquatic, including the genera Marsilea , Regnellidium , Pilularia , Salvinia , and Azolla. Heterospory is also known in the lycopod genus Selaginella and in the quillwort genus Isoëtes.

Types of seedless vascular plants:

Gymnosperms

In seed plants the microspores develop into pollen grains each containing a reduced, multicellular male gametophyte.[5] The megaspores, in turn, develop into reduced female gametophytes that produce egg cells that, once fertilized, develop into seeds. Pollen cones or microstrobili usually develop toward the tips of the lower branches in clusters up to 50 or more. The microsporangia of gymnosperms develop in pairs toward the bases of the scales, which are therefore called microsporophylls. Each of the microsporocytes in the microsporangia undergoes meiosis, producing four haploid microspores. These develop into pollen grains, each consisting of four cells and a pair of external air sacs. The air sacs give the pollen grains added buoyancy that helps with wind dispersal.[3]

Types of Gymnosperms:

Angiosperms

As the anther of a flowering plant develops, four patches of tissue differentiate from the main mass of cells. These patches of tissue contain many diploid microsporocyte cells, each of which undergoes meiosis producing a quartet of microspores. Four chambers (pollen sacs) lined with nutritive tapetal cells are visible by the time the microspores are produced. After meiosis, the haploid microspores undergo several changes:

  1. The microspore divides by mitosis producing two cells. The first of the cells (the generative cell) is small and is formed inside the second larger cell (the tube cell).
  2. The members of each part of the microspores separate from each other.
  3. A double-layered wall then develops around each microspore.

These steps occur in sequence and when complete, the microspores have become pollen grains.[3]

Embryogenesis

Although it is not the usual route of a microspore, this process is the most effective way of yielding haploid and double haploid plants through the use of male sex hormones.[6] Under certain stressors such as heat or starvation, plants select for microspore embryogenesis. It was found that over 250 different species of angiosperms responded this way.[6] In the anther, after a microspore undergoes microsporogenesis, it can deviate towards embryogenesis and become star-like microspores. The microspore can then go one of four ways: Become an embryogenic microspore, undergo callogenesis to organogenesis (haploid/double haploid plant), become a pollen-like structure or die.[6][6]

gollark: There are mods for it.
gollark: The fusion plant made several billion RF/t or something, but this never actually ended up being used anywhere since everyone involved in the project had their own dedicated fusion reactors.
gollark: That's cool, though OC 3D printing can do the same sort of thing.
gollark: This is pretty neat. Built on a server, it's a very overdone fusion plant I built with someone else.
gollark: I prefer NuclearCraft fusion.

See also

References

  1. Evert, Ray (2013). Biology of Plants. 41 Madison Avenue New York, NY 10010: Peter Marshall. ISBN 978-1-4292-1961-7.CS1 maint: location (link)
  2. Bateman, R.M.; Dimichele, W.A. (1994). "Heterospory - the most iterative key innovation in the evolutionary history of the plant kingdom". Biological Reviews of the Cambridge Philosophical Society. 69 (3): 345–417. doi:10.1111/j.1469-185x.1994.tb01276.x.
  3. Bidlack, James E.; Jansky, Shelley H. (2011). Stern's Introductory Plant Biology. New York, NY: McGraw-Hill. ISBN 978-0-07-304052-3.
  4. Lang, G (1995). "Quartäre Vegetationsgeschichte Europas". Feddes Repertorium.
  5. Bhatnagar, S.P. (1996). Gymnosperms. New Age International. p. 8. ISBN 978-8122407921.
  6. Seguí-Simarro, José M.; Nuez, Fernando (2008-09-01). "How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis". Physiologia Plantarum. 134 (1): 1–12. doi:10.1111/j.1399-3054.2008.01113.x. ISSN 1399-3054. PMID 18507790.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.