Michael Rosen (mathematician)
Michael Ira Rosen (born 7 March 1938 in Brooklyn) is an American mathematician who works on algebraic number theory, arithmetic theory of function fields, and arithmetic algebraic geometry.
Rosen earned a bachelor's degree from Brandeis University in 1959 and a PhD from Princeton University in 1963 under John Coleman Moore with thesis Representations of twisted group rings. He is a mathematics professor at Brown University.
Rosen is known for his textbooks, especially for the book with co-author Kenneth Ireland on number theory, which was inspired by ideas of André Weil;[1] this book, A Classical Introduction to Modern Number Theory gives an introduction to zeta functions of algebraic curves, the Weil conjectures, and the arithmetic of elliptic curves.
For his essay Niels Hendrik Abel and equations of the fifth degree[2] Rosen received the Chauvenet Prize.
Publications
Books
- with Kenneth Ireland: A classical introduction to modern number theory, Springer, Graduate Texts in Mathematics, 1982, 2nd edn. 1992, ISBN 038797329X (Rosen and Ireland earlier published Elements of number theory; including an introduction to equations over finite fields, Bogden and Quigley, 1972)[3]
- Number theory in function fields, Springer, Graduate Texts in Mathematics, 2002, ISBN 0-387-95335-3[4]
Articles
- Rosen, Michael (1997), "Remarks on the history of Fermat's last theorem 1844 to 1984", in Cornell, Gary; Silverman, Joseph H.; Stevens, Glenn (eds.), Modular forms and Fermat's last theorem: Papers from the Instructional Conference on Number Theory and Arithmetic Geometry held at Boston University, Boston, MA, August 9–18, 1995, New York: Springer, pp. 505–525, MR 1638493
- Rosen, Michael (1981), "Abel's theorem on the lemniscate", American Mathematical Monthly, 88 (6): 387–395, doi:10.2307/2321821, MR 0622954
- Rosen, Michael I. (1995), "Niels Hendrik Abel and equations of the fifth degree", American Mathematical Monthly, 102 (6): 495–505, doi:10.2307/2974763, MR 1336636
References
- for example, Weil's essay on Gaussian sums and cyclotomic fields, La cyclotomie jadis et naguère, 1974
- American Mathematical Monthly. volume 102, number 6, June/July 1995, pp. 495–505.
- Reviews of A Classical Introduction to Modern Number Theory:
- Childs, Lindsay N. (1983), "(review)", Mathematical Reviews, MR 0661047
- Odoni, R.W.K. (January 1984), "(review)", Bulletin of the London Mathematical Society, 16 (1): 59–60, doi:10.1112/blms/16.1.59b
- Roberts, Joseph B. (May 1984), "(review)", The American Mathematical Monthly, 91 (5): 319, doi:10.2307/2322691
- Abbott, S.J. (July 1992), "(review)", The Mathematical Gazette, 76 (476): 316, doi:10.2307/3619180
- Stevens, Glenn (1992), "(review)", Mathematical Reviews, doi:10.1007/978-1-4757-2103-4, MR 1070716
- Gouvêa, Fernando Q. (January 2006), "(review)", MAA Reviews
- Reviews of Number Theory in Function Fields:
- Gekeler, Ernst-Ulrich (2003), "(review)", Mathematical Reviews, doi:10.1007/978-1-4757-6046-0, MR 1876657 (featured review)
- Goss, David (2004), "(review)", Bulletin of the American Mathematical Society, 41 (1): 127–133, doi:10.1090/s0273-0979-03-00999-6
External links
- Michael Rosen – Homepage at Brown University
- Michael Rosen at the Mathematics Genealogy Project
- "Remarks on the History of Fermat's Last Theorem - Michael Rosen". YouTube. 16 February 2016.