Mercator series
In mathematics, the Mercator series or Newton–Mercator series is the Taylor series for the natural logarithm:
In summation notation,
The series converges to the natural logarithm (shifted by 1) whenever .
History
The series was discovered independently by Nicholas Mercator, Isaac Newton and Gregory Saint-Vincent. It was first published by Mercator, in his 1668 treatise Logarithmotechnia.
Derivation
The series can be obtained from Taylor's theorem, by inductively computing the nth derivative of at , starting with
Alternatively, one can start with the finite geometric series ()
which gives
It follows that
and by termwise integration,
If , the remainder term tends to 0 as .
This expression may be integrated iteratively k more times to yield
where
and
are polynomials in x.[1]
Complex series
The complex power series
is the Taylor series for , where log denotes the principal branch of the complex logarithm. This series converges precisely for all complex number . In fact, as seen by the ratio test, it has radius of convergence equal to 1, therefore converges absolutely on every disk B(0, r) with radius r < 1. Moreover, it converges uniformly on every nibbled disk , with δ > 0. This follows at once from the algebraic identity:
observing that the right-hand side is uniformly convergent on the whole closed unit disk.
References
- Medina, Luis A.; Moll, Victor H.; Rowland, Eric S. (2009). "Iterated primitives of logarithmic powers". International Journal of Number Theory. 7: 623–634. arXiv:0911.1325. doi:10.1142/S179304211100423X.
- Weisstein, Eric W. "Mercator Series". MathWorld.
- Eriksson, Larsson & Wahde. Matematisk analys med tillämpningar, part 3. Gothenburg 2002. p. 10.
- Some Contemporaries of Descartes, Fermat, Pascal and Huygens from A Short Account of the History of Mathematics (4th edition, 1908) by W. W. Rouse Ball