List of superconductors
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
List
Substance | Class | TC (K) | HC (T) | Type | BCS | References |
---|---|---|---|---|---|---|
Al | Element | 1.20 | 0.01 | I | yes | [1][2][3] |
Bi | Element | 5.3×10−4 | 5.2×10−6 | I | no | [note 1] [4] |
Cd | Element | 0.52 | 0.0028 | I | yes | [2][3] |
Diamond:B | Element | 11.4 | 4 | II | yes | [5][6][7] |
Ga | Element | 1.083 | 0.0058 | I | yes | [2][3][8] |
Hf | Element | 0.165 | I | yes | [2] | |
α-Hg | Element | 4.15 | 0.04 | I | yes | [2][3] |
β-Hg | Element | 3.95 | 0.04 | I | yes | [2][3] |
In | Element | 3.4 | 0.03 | I | yes | [2][3] |
Ir | Element | 0.14 | 0.0016 | I | yes | [2][8] |
α-La | Element | 4.9 | I | yes | [2] | |
β-La | Element | 6.3 | I | yes | [2] | |
Li | Element | 4×10−4 | I | [9] | ||
Mo | Element | 0.92 | 0.0096 | I | yes | [2][8] |
Nb | Element | 9.26 | 0.82 | II | yes | [2][3] |
Os | Element | 0.65 | 0.007 | I | yes | [2] |
Pa | Element | 1.4 | I | yes | [10] | |
Pb | Element | 7.19 | 0.08 | I | yes | [2][3] |
Re | Element | 2.4 | 0.03 | I | yes | [2][3][11] |
Rh | Element | 3.25×10−4 | 4.9×10−6 | I | [12] | |
Ru | Element | 0.49 | 0.005 | I | yes | [2][3] |
Si:B | Element | 0.4 | 0.4 | II | yes | [13] |
Sn | Element | 3.72 | 0.03 | I | yes | [2][3] |
Ta | Element | 4.48 | 0.09 | I | yes | [2][3] |
Tc | Element | 7.46–11.2 | 0.04 | II | yes | [2][3] |
α-Th | Element | 1.37 | 0.013 | I | yes | [2][3] |
Ti | Element | 0.39 | 0.01 | I | yes | [2][3] |
Tl | Element | 2.39 | 0.02 | I | yes | [2][3] |
α-U | Element | 0.68 | I | yes | [2][10] | |
β-U | Element | 1.8 | I | yes | [10] | |
V | Element | 5.03 | 1 | II | yes | [2][3] |
α-W | Element | 0.015 | 0.00012 | I | yes | [8][10][14] |
β-W | Element | 1–4 | [14] | |||
Zn | Element | 0.855 | 0.005 | I | yes | [2][3] |
Zr | Element | 0.55 | 0.014 | I | yes | [2][3] |
Ba8Si46 | Compound | 8.07 | 0.008 | II | yes | [15] |
C6Ca | Compound | 11.5 | 0.95 | II | [16] | |
C6Li3Ca2 | Compound | 11.15 | II | [16] | ||
C8K | Compound | 0.14 | II | [16] | ||
C8KHg | Compound | 1.4 | II | [16] | ||
C6K | Compound | 1.5 | II | [17] | ||
C3K | Compound | 3.0 | II | [17] | ||
C3Li | Compound | <0.35 | II | [17] | ||
C2Li | Compound | 1.9 | II | [17] | ||
C3Na | Compound | 2.3–3.8 | II | [17] | ||
C2Na | Compound | 5.0 | II | [17] | ||
C8Rb | Compound | 0.025 | II | [16] | ||
C6Sr | Compound | 1.65 | II | [16] | ||
C6Yb | Compound | 6.5 | II | [16] | ||
C60Cs2Rb | Compound | 33 | II | yes | [18] | |
C60K3 | Compound | 19.8 | 0.013 | II | yes | [15][19] |
C60RbX | Compound | 28 | II | yes | [20] | |
FeB4 | Compound | 2.9 | II | [21] | ||
InN | Compound | 3 | II | yes | [22] | |
In2O3 | Compound | 3.3 | ~3 | II | yes | [23] |
LaB6 | Compound | 0.45 | yes | [24] | ||
MgB2 | Compound | 39 | 74 | II | yes | [25] |
Nb3Al | Compound | 18 | II | yes | [2] | |
NbC1-xNx | Compound | 17.8 | 12 | II | yes | [26][27] |
Nb3Ge | Compound | 23.2 | 37 | II | yes | [28] |
NbO | Compound | 1.38 | II | yes | [29] | |
NbN | Compound | 16 | II | yes | [2] | |
Nb3Sn | Compound | 18.3 | 30 | II | yes | [30] |
NbTi | Compound | 10 | 15 | II | yes | [2] |
SiC:B | Compound | 1.4 | 0.008 | I | yes | [31] |
SiC:Al | Compound | 1.5 | 0.04 | II | yes | [31] |
TiN | Compound | 5.6 | 5 | I | yes | [32][33][34] |
V3Si | Compound | 17 | [35] | |||
YB6 | Compound | 8.4 | II | yes | [36][37][38] | |
ZrN | Compound | 10 | yes | [39] | ||
ZrB12 | Compound | 6.0 | II | yes | [38] | |
YBCO | Cuprate | 95 | 120–250 | II | no | |
GdBCO | Cuprate | 91 | II | no | [40] | |
BSCCO | Cuprate | 104 | ||||
HBCCO | Cuprate | 135 | ||||
SmFeAs(O,F) | Iron-based | 55 | ||||
CeFeAs(O,F) | Iron-based | 41 | ||||
LaFeAs(O,F)) | Iron-based | 26 | ||||
LaFePO | Iron-based | 4 | ||||
FeSe | Iron-based | 65 | ||||
(Ba,K)Fe2As2 | Iron-based | 38 | ||||
NaFeAs | Iron-based | 20 |
Other types
- Fulleride superconductor Cs3C60 at 38K
- Polyhydrides hydrogen rich compounds stabilised under hundreds of gigapascals pressure. For example trihydrogen sulfide H3S At pressures above 90 GPa; 23 K at 100 GPa to 150 K at 200 GPa, or lanthanum decahydride
gollark: They probably make them from digital recordings anyway.
gollark: Vinyl is analog, it's *inherently* lossy.
gollark: What? No.
gollark: Those are outdated too and only useful, loosely speaking, as some kind of weird aesthetic statement.
gollark: It's some kind of ancient analog video system, it's been obsoleted several times over.
See also
- Conventional superconductor – Materials that display superconductivity as described by BCS theory or its extensions
- Covalent superconductor – Superconducting materials where the atoms are linked by covalent bonds
- High-temperature superconductivity – Superconductive behavior at temperatures much higher than absolute zero
- Room-temperature superconductor – Material which exhibits superconductivity above 0 °C
- Superconductivity – Electrical conductivity with exactly zero resistance
- Superconductor classification – Different types of superconductors
- Technological applications of superconductivity
- Timeline of low-temperature technology – aspect of history
- Type-I superconductor – Type of superconductor with a single critical magnetic field
- Type-II superconductor – Superconductor characterized by the formation of magnetic vortices in an applied magnetic field
- Unconventional superconductor – Superconductive materials not explained by existing established theories
Notes
- According to,[4] superconductivity in Bi is not compatible with conventional BCS theory because the Fermi energy of Bi is comparable to the phonon energy (Debye frequency).
References
- Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review. 111 (1): 132–142. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132.
- Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics. 35 (1): 1–22. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1.
- Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics. 26 (3): 277–291. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277.
- Prakash, O.; et al. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure". Science. 355 (6320): 52–55. arXiv:1603.04310. Bibcode:2017Sci...355...52P. doi:10.1126/science.aaf8227. PMID 27934703.
- Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature. 428 (6982): 542–545. arXiv:cond-mat/0404156. Bibcode:2004Natur.428..542E. doi:10.1038/nature02449. PMID 15057827.
- Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials. 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. PMC 5099641. PMID 27878027.
- Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials. 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027.
- Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7.
- Tuoriniemi, J.; et al. (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 187–189. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921.
- Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860.
- Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review. 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309.
- Buchal, Ch.; et al. (1983). "Superconductivity of Rhodium at Ultralow Temperatures". Phys. Rev. Lett. 50 (1): 64–67. Bibcode:1983PhRvL..50...64B. doi:10.1103/PhysRevLett.50.64.
- Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature. 444 (7118): 465–8. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852.
- Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 3528. Bibcode:2005ITAS...15.3528L. doi:10.1109/TASC.2005.849033.
- Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials. 7: S88–S93. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.04.006.
- Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials. 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629. PMID 27878015.
- Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals. 34 (1–3): 455–460. doi:10.1016/0379-6779(89)90424-4.
- Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature. 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0.
- Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science. 256 (5060): 1190–1. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215.
- Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60" (PDF). Physical Review Letters. 66 (21): 2830–2832. Bibcode:1991PhRvL..66.2830R. doi:10.1103/PhysRevLett.66.2830. PMID 10043627.
- "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11.
- Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials. 7: S112–S116. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.06.004.
- Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials. 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. PMC 5099639. PMID 27878025.
- Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B. 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589.
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–4. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039.
- Bernhardt, K.-H. (1975). "Preparation and Superconducting Properties of Niobium Carbonitride Wires" (PDF). Z. Naturforsch. A. 30 (4): 528–532. Bibcode:1975ZNatA..30..528B. doi:10.1515/zna-1975-0422.
- Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides". Appl. Phys. Lett. 7 (2): 38–39. Bibcode:1965ApPhL...7...38P. doi:10.1063/1.1754287.
- Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics. 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941.
- Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics. 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068.
- Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review. 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435.
- Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials. 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. PMC 5099635. PMID 27878021.
- Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5.
- Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982). "Magnetic properties of titanium nitride in superconducting state". Soviet Physics - Solid State. 24 (4): 689–690.
- Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy". Physical Review B. 86 (18): 184503. arXiv:1210.6771. Bibcode:2012PhRvB..86r4503P. doi:10.1103/PhysRevB.86.184503.
- Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic; Meingast, Christoph (2012-01-01). "Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure". Journal of the Physical Society of Japan. 81 (Suppl.B): SB026. Bibcode:2012JPSJ...81B..26T. doi:10.1143/JPSJS.81SB.SB026. ISSN 0031-9015.
- Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
- Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460–462: 626–627. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135.
- Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B. 78 (2): 024522. arXiv:0707.2211. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522.
- Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis. 15 (6): 377–382. doi:10.1002/sia.740150606.
- Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01). "Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound". Journal of Physics: Conference Series. 97 (1): 012250. Bibcode:2008JPhCS..97a2250S. doi:10.1088/1742-6596/97/1/012250. ISSN 1742-6596.
External links
- A review of 700 potential superconductors Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. (2015). "Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides". Science and Technology of Advanced Materials. 16 (3): 033503. arXiv:1505.02240. Bibcode:2015STAdM..16c3503H. doi:10.1088/1468-6996/16/3/033503. PMC 5099821. PMID 27877784.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.