List of recombinant proteins
The following is a list of notable proteins that are produced from recombinant DNA, using biomolecular engineering.[1] In many cases, recombinant human proteins have replaced the original animal-derived version used in medicine. The prefix "rh" for "recombinant human" appears less and less in the literature. A much larger number of recombinant proteins is used in the research laboratory. These include both commercially available proteins (for example most of the enzymes used in the molecular biology laboratory), and those that are generated in the course specific research projects.
Human recombinants that largely replaced animal or harvested from human types
Medicinal applications
- Human growth hormone (rHGH): Humatrope from Lilly and Serostim from Serono replaced cadaver harvested human growth hormone
- human insulin (BHI): Humulin from Lilly and Novolin from Novo Nordisk among others largely replaced bovine and porcine insulin for human therapy. Some prefer to continue using the animal-sourced preparations, as there is some evidence that synthetic insulin varieties are more likely to induce hypoglycemia unawareness. Remaining manufacturers of highly purified animal-sourced insulin include the U.K.'s Wockhardt Ltd. (headquartered in India), Argentina's Laboratorios Beta S.A., and China's Wanbang Biopharma Co.
- Follicle-stimulating hormone (FSH) as a recombinant gonadotropin preparation replaced Serono's Pergonal which was previously isolated from post-menopausal female urine
- Factor VIII: Kogenate from Bayer replaced blood harvested factor VIII
Research applications
- Ribosomal proteins: For the studies of individual ribosomal proteins, the use of proteins that are produced and purified from recombinant sources[2][3][4][5] has largely replaced those that are obtained through isolation.[6][7] However, isolation is still required for the studies of the whole ribosome.[8][9]
- Lysosomal proteins: Lysosomal proteins are difficult to produce recombinantly due to the number and type of post-translational modifications that they have (e.g. glycosylation). As a result, recombinant lysosomal proteins are usually produced in mammalian cells.[10] Plant cell culture was used to produce FDA aproved glycosilated lysosmal protein-drug, and additional drug candidates.[11] Recent studies have shown that it may be possible to produce recombinant lysosomal proteins with microorganisms such as Escherichia coli and Saccharomyces cerevisiae.[12] Recombinant lysosomal proteins are used for both research and medical applications, such as enzyme replacement therapy.[13]
Human recombinants with recombination as only source
Medicinal applications
- Erythropoietin (EPO):[14] Epogen from Amgen
- Granulocyte colony-stimulating factor (G-CSF): filgrastim sold as Neupogen from Amgen; pegfilgrastim sold as Neulasta
- alpha-galactosidase A: Fabrazyme by Genzyme[15]
- alpha-L-iduronidase: (rhIDU; laronidase) Aldurazyme by BioMarin Pharmaceutical and Genzyme
- N-acetylgalactosamine-4-sulfatase (rhASB; galsulfase): Naglazyme by BioMarin Pharmaceutical
- Dornase alfa, a DNase sold under the trade name Pulmozyme by Genentech
- Tissue plasminogen activator (TPA) Activase by Genentech
- Glucocerebrosidase: Ceredase by Genzyme
- Interferon (IF) Interferon-beta-1a: Avonex from Biogen Idec; Rebif from Serono; Interferon beta-1b as Betaseron from Schering.[16] It is being investigated for the treatments of diseases including Guillain-Barré syndrome[17] and multiple sclerosis.[18]
- Insulin-like growth factor 1 (IGF-1)[19]
- Rasburicase, a Urate Oxidase analog sold as Elitek from Sanofi[20]
Animal recombinants
Medicinal applications
- Bovine somatotropin (bST)
- Porcine somatotropin (pST)
- Bovine Chymosin
Bacterial recombinants
Viral recombinants
Medicinal applications
- Envelope protein of the hepatitis B virus marketed as Engerix-B by SmithKline Beecham
- HPV Vaccine proteins
Plant recombinants
Research applications
- Polyphenol oxidases (PPOs): These include both catechol oxidases and tyrosinases.[24][25][26][27][28] In additional to research, PPOs have also found applications as biocatalysts.[29]
- Cystatins are proteins that inhibit cysteine proteases.[30][31][32][33] Research are ongoing to evaluate the potential of using cystatins in crop protection to control herbivorous pests and pathogens.[34]
Industrial applications
gollark: Hmm, were there some gateway changes? I forget.
gollark: Try increasing, decreasing and randomizing the version.
gollark: Are you using dimscord or the other one?
gollark: It's full-featured because it has 2 features and we didn't want the other ones much.
gollark: ApioServ is a full-featured replacement for the nonfunctional "atheme" instance you ran, written in Nim and using my great* implementation of the ngircd server to server protocol.
References
- Carissa L. Young, Zachary T. Britton, Anne S. Robinson (2012). "Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications". Biotechnol. J. 7: 620–634. doi:10.1002/biot.201100155. PMID 22442034.CS1 maint: multiple names: authors list (link)
- Danilo Correddu, José de Jesús Montaño López, Praveen G. Vadakkedath, Amy Lai, Jane I. Pernes, Paris R. Watson, Ivanhoe K. H. Leung (2019). "An improved method for the heterologous production of soluble human ribosomal proteins in Escherichia coli". Sci. Rep. 9: 8884. doi:10.1038/s41598-019-45323-8. PMC 6586885. PMID 31222068.CS1 maint: multiple names: authors list (link)
- N. M. Parakhnevitch, A. A. Malygin, G. G. Karpova (2005). "Recombinant human ribosomal protein S16: expression, purification, refolding, and structural stability". Biochemistry (Moscow). 70: 777–781. doi:10.1007/s10541-005-0183-3. PMID 16097941.CS1 maint: multiple names: authors list (link)
- Alexey Malygin, Oxana Baranovskaya, Anton Ivanov, Galina Karpova (2003). "Expression and purification of human ribosomal proteins S3, S5, S10, S19, and S26". Protein Expr. Purif. 28: 57–62. doi:10.1016/S1046-5928(02)00652-6. PMID 12651107.CS1 maint: multiple names: authors list (link)
- Marek Tchórzewski, Aleksandra Boguszewska, Dariusz Abramczyk, Nikodem Grankowski (1999). "Overexpression in Escherichia coli, purification, and characterization of recombinant 60S ribosomal acidic proteins from Saccharomyces cerevisiae". Protein Expr. Purif. 15: 40–47. doi:10.1006/prep.1998.0997. PMID 10024468.CS1 maint: multiple names: authors list (link)
- E Collatz, N Ulbrich, K Tsurugi, H N Lightfoot, W MacKinlay, A Lin and I G Wool (1977). "Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and 29". J. Biol. Chem. 252: 9071–9080. PMID 925037.CS1 maint: multiple names: authors list (link)
- Samuel Fogel, Paul S. Sypherd (1968). "Extraction and Isolation of Individual Ribosomal Proteins from Escherichia coli". J. Bacteriol. 96: 358–364. PMC 252306. PMID 4877123.
- Preeti Mehta, Perry Woo, Krithika Venkataraman, A. Wali Karzai (2012). "Ribosome purification approaches for studying interactions of regulatory proteins and RNAs with the ribosome". Methods Mol. Biol. 905: 273–289. doi:10.1007/978-1-61779-949-5_18. PMC 4607317. PMID 22736011.CS1 maint: multiple names: authors list (link)
- Stéphane Belin, Sabine Hacot, Lionel Daudignon, Gabriel Therizols, Stéphane Pourpe, Hichem C. Mertani, Manuel Rosa‐Calatrava, Jean‐Jacques Diaz (2010). "Purification of ribosomes from human cell lines". Curr. Protoc. Cell Biol. 49: 3.40.1–3.40.11. doi:10.1002/0471143030.cb0340s49. PMID 21154551.CS1 maint: multiple names: authors list (link)
- Damiano Migani, Christopher Mark Smales, Daniel G. Bracewell (2017). "Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells". Biotechnol. Prog. 33: 666–676. doi:10.1002/btpr.2455. PMC 5485175. PMID 28249362.CS1 maint: multiple names: authors list (link)
- Tekoah, Yoram; Shulman, Avidor; Kizhner, Tali; Ruderfer, Ilya; Fux, Liat; Nataf, Yakir; Bartfeld, Daniel; Ariel, Tami; Gingis-Velitski, Svetlana; Hanania, Uri; Shaaltiel, Yoseph (October 2015). "Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience". Plant Biotechnology Journal. 13 (8): 1199–1208. doi:10.1111/pbi.12428.
- Ángela J. Espejo-Mojica, Carlos J. Alméciga-Díaz, Alexander Rodríguez, Ángela Mosquera, Dennis Díaz, Laura Beltrán, Sergio Díaz, Natalia Pimentel, Jefferson Moreno, Jhonnathan Sánchez, Oscar F. Sánchez, Henry Córdoba, Raúl A. Poutou-Piñales, Luis A. Barrera (2015). "Human recombinant lysosomal enzymes produced in microorganisms". Mol. Genet. Metab. 116: 13–23. doi:10.1016/j.ymgme.2015.06.001. PMID 26071627.CS1 maint: multiple names: authors list (link)
- Melani Solomon, Silvia Muro (2017). "Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives". Adv. Drug Deliv. Rev. 118: 109–134. doi:10.1016/j.addr.2017.05.004. PMC 5828774. PMID 28502768.
- Noboru Inoue, Makoto Takeuchi, Hideya Ohashi, Takamoto Suzuki (1995). "The production of recombinant human erythropoietin". Biotechnol. Annu. Rev. 1: 297–313. doi:10.1016/S1387-2656(08)70055-3. PMID 9704092.CS1 maint: multiple names: authors list (link)
- Greg Baigent, Debra Barngrover (2002). "Recombinant Interleukin-2 (aldesleukin) for oncology and HIV disease and recombinant protein treatment (Fabrazyme) for Fabry's disease (No. 14 in a series of articles to promote a better understanding of the use of genetic engineering)". J. Biotechnol. 93: 277–283. doi:10.1016/S0168-1656(02)00019-6.
- A. Munafo I. Trinchard‐Lugan T.X.Q. Nguyen M. Buraglio (1998). "Comparative pharmacokinetics and pharmacodynamics of recombinant human interferon beta‐1a after intramuscular and subcutaneous administration". Eur. J. Neurol. 5: 187–193. doi:10.1046/j.1468-1331.1998.520187.x. PMID 10210831.
- J. Pritchard, I. A. Gray, Z. R. Idrissova, B. R. F. Lecky, I. J. Sutton, A. V. Swan, H. J. Willison, J. B. Winer, R. A. C. Hughes (2003). "A randomized controlled trial of recombinant interferon-beta 1a in Guillain-Barré syndrome". Neurology. 61: 1282–1284. doi:10.1212/01.WNL.0000092019.53628.88. PMID 14610140.CS1 maint: multiple names: authors list (link)
- C. Pozzilli, S. Bastianello, T. Koudriavtseva, C. Gasperini, A. Bozzao, E. Millefiorini, S. Galgani, C. Buttinelli, G. Perciaccante, G. Piazza, L. Bozzao, C. Fieschi (1996). "Magnetic resonance imaging changes with recombinant human interferon-beta-1a: a short term study in relapsing-remitting multiple sclerosis". J. Neurol. Neurosurg. Psychiatry. 61: 251–258. doi:10.1136/jnnp.61.3.251. PMC 486547. PMID 8795595.CS1 maint: multiple names: authors list (link)
- Marvin L. Bayne, Joy Applebaum, Gary G. Chicchi, Nancy S. Hayes, Barbara G. Green, Margaret A. Cascieri (1988). "Expression, purification and characterization of recombinant human insulin-like growth factor I in yeast". Gene. 66: 235–244. doi:10.1016/0378-1119(88)90360-5. PMID 3049246.CS1 maint: multiple names: authors list (link)
- S. Jeha, H. Kantarjian, D. Irwin, V. Shen, S. Shenoy, S. Blaney, B. Camitta, C.-H. Pui (2005). "Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial". Leukemia. 19: 34–38. doi:10.1038/sj.leu.2403566. PMID 15510203.CS1 maint: multiple names: authors list (link)
- Veeresh Juturu, Jin Chuan Wu (2012). "Microbial xylanases: Engineering, production and industrial applications". Biotechnol. Adv. 30: 1219–1227. doi:10.1016/j.biotechadv.2011.11.006.
- Alagarsamy Sumantha, Christian Larroche, Ashok Pandey (2006). "Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective". Food Technol. Biotechnol. 44: 211–220.CS1 maint: multiple names: authors list (link)
- Karl-Heinz Maurer (2004). "Detergent proteases". Curr. Opin. Biotechnol. 15: 330–334. doi:10.1016/j.copbio.2004.06.005. PMID 15296930.
- Yu Li, Mark-Anthony McLarin, Martin J. Middleditch, Stuart J. Morrow, Paul A. Kilmartin, Ivanhoe K. H. Leung (2019). "An approach to recombinantly produce mature grape polyphenol oxidase". Biochimie. doi:10.1016/j.biochi.2019.07.002.CS1 maint: multiple names: authors list (link)
- Ala eddine Derardja, Matthias Pretzler, Ioannis Kampatsikas, Malika Barkat, Annette Rompel (2017). "Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.)". J. Agric. Food Chem. 65: 8203–8212. doi:10.1021/acs.jafc.7b03210. PMC 5609118. PMID 28812349.CS1 maint: multiple names: authors list (link)
- Ayako Katayama-Ikegami, Yuka Suehiro, Takane Katayama, Kazushi Jindo, Hiroyuki Itamura, Tomoya Esum (2017). "Recombinant expression, purification, and characterization of polyphenol oxidase 2 (VvPPO2) from "Shine Muscat" (Vitis labruscana Bailey × Vitis vinifera L.)". Biosci. Biotechnol. Biochem. 81: 2330–2338. doi:10.1080/09168451.2017.1381017. PMID 29017399.CS1 maint: multiple names: authors list (link)
- Eva Marková, Michael Kotik, Alena Křenková, Petr Man, Romain Haudecoeur, Ahcène Boumendjel, Renaud Hardré, Yasmina Mekmouche, Elise Courvoisier-Dezord, Marius Réglier, Ludmila Martínková (2016). "Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors". J. Agric. Food Chem. 64: 2925–2931. doi:10.1021/acs.jafc.6b00286. PMID 26961852.CS1 maint: multiple names: authors list (link)
- Mareike E. Dirks-Hofmeister, Stephan Kolkenbrock, Bruno M. Moerschbacher (2013). "Parameters That Enhance the Bacterial Expression of Active Plant Polyphenol Oxidases". PLoS ONE. 8: e77291. doi:10.1371/journal.pone.0077291. PMC 3804589. PMID 24204791.CS1 maint: multiple names: authors list (link)
- Sidy Ba, Vaidyanathan Vinoth Kumar (2017). "Recent developments in the use of tyrosinase and laccase in environmental applications". Crit. Rev. Biotechnol. 37: 819–832. doi:10.1080/07388551.2016.1261081. PMID 28330374.
- Jonathan Tremblay, Marie-Claire Goulet, Dominique Michaud (2019). "Recombinant cystatins in plants". Biochimie. doi:10.1016/j.biochi.2019.06.006. PMID 31194996.CS1 maint: multiple names: authors list (link)
- Hiroto Kondo, Keiko Abe, Ikuko Nishimura, Hirohito Watanabe, Yasufumi Emori, Soichi Arai (1990). "Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin-II". J. Biol. Chem. 265: 15832–15837. PMID 1697595.CS1 maint: multiple names: authors list (link)
- Keiko Abe, Hiroto Kondo, Soichi Arai (1987). "Purification and Characterization of a Rice Cysteine Proteinase Inhibitor". Agricultural and Biological Chemistry. 51: 2763–2768. doi:10.1080/00021369.1987.10868462.CS1 maint: multiple names: authors list (link)
- Keiko Abe, Yasufumi Emori, Hiroto Kondo, Koichi Suzuki, Soichi Arai (1987). "Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds". J. Biol. Chem. 262: 16793–16797. PMID 3500172.CS1 maint: multiple names: authors list (link)
- Karl J. Kunert, Stefan G. van Wyk, Christopher A. Cullis, Barend J. Vorster, Christine H. Foyer (2015). "Potential use of phytocystatins in crop improvement, with a particular focus on legumes". J. Exp. Bot. 66: 3559–3570. doi:10.1093/jxb/erv211. PMID 25944929.CS1 maint: multiple names: authors list (link)
- Diana M. Mate, Miguel Alcalde (2017). "Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology". Microb. Biotechnol. 10: 1457–1467. doi:10.1111/1751-7915.12422. PMC 5658592. PMID 27696775.
- Fabio Tonin, Elena Rosini, Luciano Piubelli, Antonio Sanchez-Amat,Loredano Pollegioni (2016). "Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea". Protein Expr. Purif. 123: 60–69. doi:10.1016/j.pep.2016.03.011. PMID 27050199.CS1 maint: multiple names: authors list (link)
- Johann F. Osma, José L. Toca-Herrera, Susana Rodríguez-Couto (2010). "Uses of Laccases in the Food Industry". Enzyme Res. 2010: 918761. doi:10.4061/2010/918761. PMC 2963825. PMID 21048873.CS1 maint: multiple names: authors list (link)
- Rosana C. Minussi, Gláucia M. Pastore, Nelson Durán (2002). "Potential applications of laccase in the food industry". Trends Food Sci. Technol. 13: 205–216. doi:10.1016/S0924-2244(02)00155-3.CS1 maint: multiple names: authors list (link)
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.