List of books about polyhedra

This is a list of books about polyhedra.

Books of cut-out kits for making card models

  • Jenkins, G. and Bear, M.; Advanced Polyhedra 1: The Final Stellation, Tarquin. ISBN 1-899618-61-9
  • Jenkins, G. and Bear, M.; Advanced Polyhedra 2: The Sixth Stellation, Tarquin. ISBN 1-899618-62-7
  • Jenkins, G. and Bear, M.; Advanced Polyhedra 3: The Compound of Five Cubes, Tarquin. ISBN 978-1-899618-63-7
  • Jenkins, G. and Wild, A.; Mathematical Curiosities, Tarquin. ISBN 1-899618-35-X
  • Jenkins, G. and Wild, A.; More Mathematical Curiosities, Tarquin. ISBN 1-899618-36-8
  • Jenkins, G. and Wild, A.; Make shapes 1, various editions, Tarquin. Simple convex and star polyhedra ISBN 0-906212-00-6
  • Jenkins, G. and Wild, A.; Make shapes 2, various editions, Tarquin. Convex and star polyhedra ISBN 0-906212-01-4
  • Jenkins, G. and Bear, M.; Paper Polyhedra in Colour, Tarquin. ISBN 1-899618-23-6
  • Smith, A.G.; Cut and assemble 3-D geometrical shapes: 10 models in full color, Dover (1986). Convex and star polyhedra.
  • Smith, A.G.; Cut and assemble 3-D star shapes, Dover (1997). Star polyhedra.
  • Smith, A.G.; Easy-to-make 3D shapes in full color, Dover (2000). Simple convex polyhedra.

Instructions for making models

  • Fuse, T.; Unit Origami: Multidimensional Transformations, Japan Publications (1990). ISBN 0-87040-852-6, ISBN 978-0-87040-852-6. Contains origami instructions to build many polyhedra. The shapes vary from simple to extremely complex. The book focuses on origami and construction.
  • Gorham, J.; Crystal models: on the type of an ordinary plait (1888). Reprint, Ed. Sharp, J., Tarquin (2007), also includes reprinted articles by Pargeter, R. and Brunton, J. ISBN 978-1-899618-68-2
  • Gurkewitz, R, Arnstein, B; "3D Geometric Origami: Modular Origami Polyhedra", Dover Publications (1996)
  • Hilton, P., Carlisle, P., Lewis, M. & Pedersen, J,; Build Your Own Polyhedra, Dale Seymour; 2nd edition (1994). ISBN 0-201-49096-X, ISBN 978-0-201-49096-1. Contains instructions for building the Platonic solids and other shapes using paper tape. The focus audience is teachers. Includes some mathematics.
  • Mitchell, D.; Mathematical origami: geometrical shapes and paper folding, Tarquin (1997). ISBN 978-1-899618-18-7
  • Montroll, John; Origami Polyhedra Design, A K Peters, 2009
  • Wenninger, M.; Polyhedron models for the classroom, pbk (1974)
  • Wenninger, M.; Polyhedron models, CUP hbk (1971), pbk (1974). Classic work giving instructions for all the uniform polyhedra and some stellations. Includes some basic theory.
  • Wenninger, M.; Spherical models, CUP. Includes some basic theory.
  • Wenninger, M.; Dual models, CUP hbk (1983), pbk (2003). Instructions for all the uniform dual polyhedra. Includes some theoretical discussion.

Introductory books, also suitable for school use

  • Britton, J., Polyhedra Pastimes, Dale Seymour Publishing, 2001, ISBN 0-7690-2782-2.
  • Cromwell, P., Polyhedra, Cambridge University Press, 1997.
  • Cundy, H. M. and Rollett, A. P., Mathematical models, Oxford University Press, 1951; 3rd ed., Tarquin, 1981, ISBN 978-0-906212-20-2.
  • Holden, A., Shapes, space and symmetry, 1971; Dover, 1991.
  • Pearce, P. and Pearce, S., Polyhedra primer, Van Nost. Reinhold, 1979, ISBN 0-442-26496-8, ISBN 978-0-442-26496-3.
  • Ball, W. W. R. and Coxeter, H. S. M., Mathematical recreations and essays, Dover, 13th Edn (1987). Editions up to the 10th were written by Ball. Chapter V provides an introduction to polyhedra.
  • Wachman, A., Burt, M. and Kleinmann, M.; Infinite polyhedra, Technion, 1st Edn. (1974), 2nd Edn. (2005). Pictorial and photographic representations.

Undergraduate level

  • Beck, Matthias and Robins, Sinai; Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Springer, Undergraduate Texts in Mathematics, 2nd ed., 2015, ISBN 978-1-4939-2968-9
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5
  • Coxeter, H.S.M., DuVal, P., Flather, H. T., and Petrie, J. F.; The fifty-nine icosahedra, 3rd Edn. Tarquin.
  • Coxeter, H.S.M.; Twelve geometric essays (1968). Republished as The beauty of geometry: Twelve essays, Dover (1999). Almost half the essays discuss polyhedra or related topics.
  • Fejes Tóth, L.; Regular figures, Pergamon (1964).
  • Lakatos, I.; Proofs and Refutations, Cambridge University Press, 1976 – Discussion of proofs of the Euler characteristic.
  • Hilton, P. and Pedersen, J.; A mathematical tapestry: demonstrating the beautiful unity of mathematics, Cambridge University Press (2010). ISBN 0-521-12821-8. About half the chapters discuss polyhedra and their relationships to other areas of mathematics.
  • Senechal, M. & Fleck, G. (Eds); Shaping Space: A Polyhedral Approach, Birkhauser (1988), ISBN 0-8176-3351-0. Based on workshops and papers presented at the Shaping Space Conference, Smith College, April 1984. Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, 2nd ed., Springer, 2013.
  • Stewart, B.M.; Adventures Among the Toroids, self-published (1970; 2nd ed., 1980).
  • Thompson, Sir D'A. W.; On growth and form (1943).

Advanced mathematical texts

  • Alexandrov, A. D., Convex Polyhedra, Springer, 2005 (translated from 1950 Russian edition)
  • Coxeter, H.S.M., Regular Polytopes 3rd ed. Dover, 1973.
  • Coxeter, H.S.M., Regular complex polytopes, Cambridge University Press, 1974.
  • Coxeter, H.S.M., Kaleidoscopes: Selected Writings, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
  • Grünbaum, Branko, Convex Polytopes, Springer, 1967, 2nd ed. 2003
  • McMullen, Peter & Schulte, Egon, Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications 92, Cambridge University Press, 2002
  • McMullen, Peter, Geometric Regular Polytopes, Encyclopedia of Mathematics and its Applications 172, Cambridge University Press, 2020
  • Richter-Gebert, Jürgen, Realization Spaces of Polytopes, Springer, 1996
  • Thomas, Rekha, Lectures in Geometric Combinatorics, Amer. Math. Soc. 2006
  • Ziegler, Günter M., Lectures on Polytopes, Springer, 1993

Historic books

Listed in chronological order.

Books on the history of polyhedra

gollark: But you can live in both obviously.
gollark: Chorus City (/warp choruscity) is cooler.
gollark: Not specifically the republic.
gollark: Anywhere, I mean.
gollark: Well, ACTUALLY, you can just claim land in any free spot.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.