Linear matrix inequality

In convex optimization, a linear matrix inequality (LMI) is an expression of the form

where

  • is a real vector,
  • are symmetric matrices ,
  • is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone in the subspace of symmetric matrices .

This linear matrix inequality specifies a convex constraint on y.

Applications

There are efficient numerical methods to determine whether an LMI is feasible (e.g., whether there exists a vector y such that LMI(y)  0), or to solve a convex optimization problem with LMI constraints. Many optimization problems in control theory, system identification and signal processing can be formulated using LMIs. Also LMIs find application in Polynomial Sum-Of-Squares. The prototypical primal and dual semidefinite program is a minimization of a real linear function respectively subject to the primal and dual convex cones governing this LMI.

Solving LMIs

A major breakthrough in convex optimization lies in the introduction of interior-point methods. These methods were developed in a series of papers and became of true interest in the context of LMI problems in the work of Yurii Nesterov and Arkadi Nemirovski.

gollark: You can live with food irregularly and/or with little choice as long as you at least get *some* amount, although it may not be very good for you.
gollark: What we get in nice Western countries is lots of choices for food basically whenever we want it.
gollark: I keep my immune system healthy by sitting on top of my servers and running prime95.
gollark: You can live without *reliable* food as long as you mostly get some.
gollark: Or you can just photosynthesize.

References

  • Y. Nesterov and A. Nemirovsky, Interior Point Polynomial Methods in Convex Programming. SIAM, 1994.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.