Langbeinites

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation such as potassium, rubidium, caesium, or ammonium), and M' is a small divalent cation for example (magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group, SO42−, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate BeF42−, selenate (SeO42−), chromate (CrO42−), molybdate (MO42−), or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

At higher temperatures the crystal structure is cubic P213.[1] However, the crystal structure may change to lower symmetries at lower temperatures, for example, P21, P1, or P212121.[1] Usually this temperature is well below room temperature, but in a few cases the substance must be heated to acquire the cubic structure.

Crystal structure

The crystal structures of langbeinites consist of a network of oxygen vertex-connected tetrahedral polyanions (such as sulfate) and distorted metal ion-oxygen octahedra.[2] The unit cell contains four formula units. In the cubic form the tetrahedral anions are slightly rotated from the main crystal axes. When cooled, this rotation disappears and the tetrahedra align, resulting in lower energy as well as lower crystal symmetry.

Examples

Sulfates include dithallium dicadmium sulfate,[3] Dirubidium dicadmium sulfate[4] dipotassium dicadmium sulfate,[5] dithallium manganese sulfate.[6] dirubidium dicalcium trisulfate.[7]

Selenates include diammonium dimanganese selenate.[1] A diammonium dicadmium selenate langbeinite could not be crystallised from water, but a trihydrate exists.[8]

Chromate based langbeinites include dicaesium dimanganese chromate.[1]

Molybdates include Rb2Co2(MoO4)3.[1] Potassium members are absent, as are zinc and copper containing solids, which all crystallize in different forms. Manganese, magenesium, cadmium and some nickel double molydates exist as langbeinites.[9]

Double tungstates of the form A2B2(WO4)3 are predicted to exist in the langbeinite form.[10]

Examples with tetrafluroberyllate include dipotassium dimanganese tetrafluoroberyllate K2Mn2(BeF4)3,[11]

Other tetrafluoroberyllates may include Rb2Mg2(BeF4)3 Tl2Mg2(BeF4)3 Tl2Mn2(BeF4)3 Rb2Ni2(BeF4)3 Tl2Ni2(BeF4)3 Rb2Zn2(BeF4)3 Tl2Zn2(BeF4)3 Cs2Ca2(BeF4)3 Rb2Ca2(BeF4)3 RbCsMnCd(BeF4)3 Cs2MnCd(BeF4)3 RbCsCd2(BeF4)3 Cs2Cd2(BeF4)3. Tl2Cd2(BeF4)3 (NH4)2Cd2(BeF4)3 KRbMnCd(BeF4)3 K2MnCd(BeF4)3 Rb2MnCd(BeF4)3 Rb2Cd2(BeF4)3 RbCsCo2(BeF4)3 (NH4)2Co2(BeF4)3 K2Co2(BeF4)3 Rb2Co2(BeF4)3 Tl2Co2(BeF4)3 RbCsMn2(BeF4)3 Cs2Mn2(BeF4)3 RbCsZn2(BeF4)3 (NH4)2Mg2(BeF4)3 (NH4)2Mn2(BeF4)3 (NH4)2Ni2(BeF4)3 (NH4)2Zn2(BeF4)3 KRbMg2(BeF4)3 K2Mg2(BeF4)3. KRbMn2(BeF4)3 K2Mn2(BeF4)3 K2Ni2(BeF4)3 K2Zn2(BeF4)3[12]

The phosphate containing langbeinites were found in 1972 with the discovery of KTi2(PO4)3, and since then a few more phosphates that also contain titanium have been found such as Na2FeTi(PO4), Na2CrTi(PO4)3. By substituting metals in A2MTi(PO4)3, A from K, Rb, Cs, and M from Cr, Fe or V other langbeinites are made. The NASICON-type structure competes for these kinds of phosphates, so not all possibilities are langbeinites.[1] Other phosphate based substances include K2YTi(PO4)3 K2ErTi(PO4)3 K2YbTi(PO4)3, K2CrTi(PO4)3[1] K2AlSn(PO4)3[13] Rb2YbTi(PO4)3.[14] Sodium barium diiron tris-(phosphate) NaBaFe2(PO4)3 is yet another variation with the same structure but differently charged ions.[15] Most phosphates of this kind of formula do not form langbeinites, instead crystallise in the NASICON structure with archetype Na3Zr2(PO4)(SiO4)2.[1]

A langbeinite with arsenate is known to exist by way of K2ScSn(AsO4)3.[16]

Properties

Physical properties

Lanbeinite crystals can show ferroelectric or ferroelastic properties.[1] Diammonium dicadmium sulfate identified by Jona and Pepinsky[17] with a unit cell size of 10.35 Å becomes ferroelectric when the temperature drops below 95K.[18] The phase transition temperature is not fixed, and can vary depending on the crystal or history of temperature change. So for example the phase transition in diammonium dicadmium sulfate can occur between 89 and 95 K.[19] Under pressure the highest phase transition temperature increases. ∂T/∂P = 0.0035 degrees/bar. At 824 bars there is a triple point with yet another transition diverging at a slope of ∂T/∂P = 0.103 degrees/bar.[20] For dipotassium dimanganese sulfate pressure causes the transition to rise at the rate of 6.86 °C/kbar. The latent heat of the transition is 456 cal/mol.[21]

Dithallium dicadmium sulfate was shown to be ferroelectric in 1972.[22]

Dipotassium dicadmium sulfate is thermoluminescent with stronger outputs of light at 350 and 475 K. This light output can be boosted forty times with a trace amount of samarium.[23] Dipotassium dimagnesium sulfate doped with dysprosium develops thermoluminescence and mechanoluminescence after being irradiated with gamma rays.[24] Since gamma rays occur naturally, this radiation induced thermoluminescence can be used to date evaporites in which langbeinite can be a constituent.[25]

At higher temperatures the crystals take on cubic form, whereas at the lowest temperatures they can transform to an orthorhombic crystal group. For some types there are two more phases, and as the crystal is cooled it goes from cubic, to monoclinic, to triclinic to orthorhombic. This change to higher symmetry on cooling is very unusual in solids.[26] For some langbeinites only the cubic form is known, but that may be because it has not been studied at low enough temperatures yet. Those that have three phase transitions go through these crystallographic point groups: P213 – P21 – P1 – P212121, whereas the single phase change crystals only have P213 – P212121.

K2Cd2(SO4)3 has a transition temperature above room temperature, so that it is ferroelectric in standard conditions. The orthorhombic cell size is a=10.2082 Å, b=10.2837 Å, c=10.1661 Å.[27]

Where the crystals change phase there is a discontinuity in the heat capacity. The transitions may show thermal hysteresis.[28]

Different cations can be substituted so that for example K2Cd2(SO4)3 and Tl2Cd2(SO4)3 can form solid solutions for all ratios of thallium and potassium. Properties such as the phase transition temperature and unit cell sizes vary smoothly with the composition.[29]

Langbeinites containing transition metals can be coloured. For example, cobalt langbeinite shows a broad absorption around 555 nm due to the cobalt 4T1g(F)4T1g(P) electronic transition.[30]

The enthalpy of formation (ΔfHm) for solid (NH4)2Cd2(SO4)3 at 298.2K is −3031.74±0.08 kJ/mol, and for K2Cd2(SO4)3 it is -3305.52±0.17 kJ/mol.[31]

Sulfates

formula weight comment transition temperature K density cell size refractive
elements formula g/mol symmetries 1 2 3[32] Å index
NaMg Na2Mg2(SO4)3 382.78 3 phases, 1-2,>3 250 350 575[33]
KMg K2Mg2(SO4)3 414.99 4 phases Langbeinite 51 54.9 63.8 2.832[34] 9.9211[35] 1.536[36]
RbMg Rb2Mg2(SO4)3 507.73 made 3.367[37] 10.0051[37] 1.556[37]
CsMg Cs2Mg2(SO4)3 602.61 no compound[10]
(NH4)Mg (NH4)2Mg2(SO4)3 372.87 Efremovite[38] 241[39] 220[39] 2.49[40] 9.979[40]
TlMg Tl2Mg2(SO4)3 745.56 ≥3 phase 227.8[39] 330.8[39]
KCaMg K2CaMg(SO4)3 430.77 made 2.723[41] 10.1662[41] 1.525[41]
KCa K2Ca2(SO4)3 446.54 4 phases calciolangbeinite[42][43] 457 2.69 2.683[44] 10.429Å a=10.334 b=10.501 c=10.186 Nα=1.522 Nβ=1.526 Nγ=1.527
RbCa Rb2Ca2(SO4)3 539.28 2 phases 183 3.034[45] 10.5687[45] 1.520[45]
CsCa Cs2Ca2(SO4)3 634.15 3.417[46][47] 10.7213 1.549
TlCa no compound[10]
(NH4)Ca (NH4)2Ca2(SO4)3 404.42 made 158 2.297[48] 10.5360[48] 1.532[48]
NH4V (NH4)2V2(SO4)3 colour clear green[49] 2.76[50] 10.089[49]
KMn manganolangbeinite[51] K2Mn2(SO4)3 476.26 2 phases
pale pink[52]
191 3.02[35] 10.014[35]
(orthorhombic)
a=10.081, b=10.108, c=10.048 Å[53]
1.576[52]
RbMn[54] Rb2Mn2(SO4)3 569 made 3.546[55] 10.2147[55] 1.590[55]
CsMn Cs2Mn2(SO4)3 663.87 predicted[10]
(NH4)Mn (NH4)2Mn2(SO4)3 434.14 made 2.72[40] 10.1908[56]
TlMn Tl2Mn2(SO4)3 806.83 made 5.015[57] 10.2236[57] 1.722[57]
KFe K2Fe2(SO4)3 478.07 made ?130
RbFe predicted[10]
TlFe 808.64 exists[10]
NH4Fe (NH4)2Fe2(SO4)3[49] 435.95 exits 2.84[40] 10.068[40]
KCo K2Co2(SO4)3 484.25 2 phases
deep purple
126 3.280[34] 9.9313[35] 1.608[58]
RbCo Rb2Co2(SO4)3 576.99 made 3.807[59] 10.0204[59] 1.602[59]
CsCo 671.87
(NH4)Co (NH4)2Co2(SO4)3 442.13 made 2.94[40] 9.997[40]
TlCo Tl2Co2(SO4)3 813.82 made 5.361[60] 10.0312 1.775
KNi K2Ni2(SO4)3 483.77 made[61] light greenish yellow[62] 3.369[34] 9.8436[62] 1.620[62]
RbNi Rb2Ni2(SO4)3 576.51 made 3.921[63] 9.9217[63] 1.636[63]
CsNi 671.39 predicted[10]
(NH4)Ni (NH4)2Ni2(SO4)3 441.65 made[61] 160 3.02[40] 9.904[40]
TlNi Tl2Ni2(SO4)3 814.34 predicted[10]
RbCu predicted[10]
CsCu predict not[10]
TlCu predicted[10]
KZn K2Zn2(SO4)3 497.1 4 phases 75 138 3.376[34] 9.9247[64] 1.592[64]
RbZn predicted[10]
CsZn predict not[10]
TlZn predicted[10]
KCd K2Cd2(SO4)3 591.21 2 phases 432 2.615 3.677[65] a=10.212 b=10.280 c=10.171 Nα=1.588 Nγ=1.592
RbCd Rb2Cd2(SO4)3 683.95 4 phases 66 103 129 4.060[35][66] 10.3810[35][66] 1.590[66]
(NH4)Cd (NH4)2Cd2(SO4)3 549.09 4 phases 95 3.288[35] 10.3511[35]
TlCd Tl2Cd2(SO4)3 921.78 4 phases 92 120 132 5.467[35] 10.3841[35] 1.730[67]

Fluoroberyllates

elements formula formula weight cell Å volume density comment
KMnBe K2Mn2(BeF4)3[11] 4 phases transition at 213
KMg[68] K2Mg2(BeF4)3 9.875 962.8 1.59
(NH4)Mg (NH4)2Mg2(BeF4)3[68] 9.968 1.37
KRbMg KRbMg2(BeF4)3[68] 9.933 1.72
RbMg Rb2Mg2(BeF4)3[68] 9.971 1.91
TlMg Tl2Mg2(BeF4)3[68] 9.997 2.85 (CsMg does not exist)[68]
KNi K2Ni2(BeF4)3[68] 9.888 1.86
RbNi Rb2Ni2(BeF4)3[68] 9.974 2.19
TlNi Tl2Ni2(BeF4)3[68] 9.993 3.13
KCo K2Co2(BeF4)3[68] 9.963 988 1.82
(NH4)Co (NH4)2Co2(BeF4)3[68] 10.052 1.61
RbCo Rb2Co2(BeF4)3[68] 10.061 2.14
TlCo Tl2Co2(BeF4)3[68] 10.078 3.05
RbCsCo RbCsCo2(BeF4)3[68] 10.115 2.28
KZn K2Zn2(BeF4)3[68] 9.932 1.89
(NH4)Zn (NH4)Zn2(BeF4)3[68] 10.036 1.67
RbZn Rb2Zn2(BeF4)3[68] 10.035 2.20
TlZn Tl2Zn2(BeF4)3[68] 10.060 3.14
RbCsZn RbCsZn2(BeF4)3[68] 10.102 2.36
KMn K2Mn2(BeF4)3[68] 10.102 1.72
KRbMn KRbMn2(BeF4)3[68] 10.187 1.82
(NH4)Mn (NH4)2Mn2(BeF4)3[68] 10.217 1.50
RbMn Rb2Mn2(BeF4)3[68] 10.243 2.00
TlMn Tl2Mn2(BeF4)3[68] 10.255 2.87
RbCsMn RbCs2Mn2(BeF4)3[68] 10.327 2.12
CsMn Cs2Mn2(BeF4)3[68] 10.376 2.26
KMnCd K2MnCd(BeF4)3[68] 10.133 1.92
KRbMnCd KRbMnCd(BeF4)3[68] 10.220 2.04
RbMnCd Rb2MnCd(BeF4)3[68] 10.133 1.92
RbCsMnCd RbCsMnCd(BeF4)3[68] 10.380 2.28
CsMnCd Cs2MnCd(BeF4)3[68] 10.451 2.41
(NH4)Cd (NH4)2Cd2(BeF4)3[68] 10.342 1.87
RbCd Rb2Cd2(BeF4)3[68] 10.385 2.32
TlCd Tl2Cd2(BeF4)3[68] 10.402 3.16
RbCsCd RbCs2Cd2(BeF4)3[68] 10.474 2.43
CsCd Cs2Cd2(BeF4)3[68] 10.558 2.53
RbCsCdCa RbCs2CdCa(BeF4)3[68] 10.501 2.15
RbCa Rb2Ca2(BeF4)3[68] 10.480 1.74
RbCsCa RbCsCa2(BeF4)3[68] 10.583 1.86
CsCa Cs2Ca2(BeF4)3[68] 10.672 1.98

Phosphates

substance formula weight unit cell edge Å density comment
LiCs2Y2(PO4)3[69] 735.48 10.5945 4.108
LiRb2Y2(PO4)3[70] non-linear optical
K2YTi(PO4)3[1] 578.25 10.1053 3.192
K2ErTi(PO4)3[1] 584.03 10.094 3.722
K2YbTi(PO4)3[1] 499.89 10.1318 3.772
K2CrTi(PO4)3[1] 462.98 9.8001 3.267
(NH4)(H3O)TiIIITiIV(PO4)3[71] 417.71 9.9384
K2Ti2(PO4)3[72] 458.84 9.8688 Also K2−x; dark blue
Rb2Ti2(PO4)3[72] 551.58 9.9115
Tl2Ti2(PO4)3[72] 789.41 9.9386
Na2FeTi(PO4)3[73] 9.837
Na2CrTi(PO4)3[73] 9.775
K2Mn0.5Ti1.5(PO4)3[74] 9.903 3.162 dark brown
K2Co0.5Ti1.5(PO4)3[74] 9.844 3.233 dark brown
Rb4NiTi3(PO4)6[75] 1113.99÷2 9.9386
K2AlTi(PO4)3[76] 437.96 9.7641 3.125 colourless
Li2Zr2(PO4)3[77] 481.24
K2(Ce,...,Lu)Zr(PO4)3[78] 594.45...629.3 10.29668
Rb2FeZr(PO4)3[79] 602.92 10.1199
K2FeZr(PO4)3[80] 510.18 10.0554 dark grey Note Na2FeZr(PO4)3 is not a langbeinite.[81]
K2YZr(PO4)3[82] 543.24 10.3346 random Y and Zr
K2GdZr(PO4)3[82] 611.58 10.3457 random Gd and Zr
K2YHf(PO4)3[83] 630.51 10.3075 3.824
Li(H2O)2Hf2(PO4)3[84] 684.87 10.1993
K2BiHf(PO4)3[85] 750.58
Li(H2O)2Zr2(PO4)3[77] 510.33 10.2417
K2AlSn(PO4)3 508.78 9.798[13]
K2CrSn(PO4)3 9.8741
K2InSn(PO4)3 10.0460
K2FeSn(PO4)3 9.921
K2YbSn(PO4)3 10.150
K4Al3Ta(PO4)6[86] 988.11 9.7262
K4Cr3Ta(PO4)6[86] 1063.16 9.8315
K4Fe3Ta(PO4)6[86] 1074.70 9.9092
K4Tb3Ta(PO4)6 10.3262[87]
K4Fe3Nb(PO4)6[86] 986.66 9.9092
KBaEr2(PO4)3[88] 795.857
RbBaEr2(PO4)3[88] 842.227
CsBaEr2(PO4)3[88] 889.665
(Rb,Cs)2(Pr,Er)Zr(PO4)3[88]
KCsFeZrP3O12 603.99 10.103[89]
CaFe3O(PO4)3[90] 508.53
SrFe3O(PO4)3[90] 556.1
PbFe3O(PO4)3[90] 675.6
KSrFe2(PO4)3[91] 523.32 9.809 3.68 yellowish
Pb1.5VIV2(PO4)3 697.6 9.7818 4.912[92]
K2TiV(PO4)[93] 9.855 green
BaTiV(PO4)[93] 9.922 3.54 at high temperature >950 °C dark grey
KBaV2(PO4)[93] 9.873 greenish yellow
Ba1.5V2(PO4)[93] 9.884 grey
Ba1.5Fe3+2(PO4)3[94][95] 602.59
KSrSc2(PO4)3[96] 501.54
Rb0.743K0.845Co0.293Ti1.707(PO4)3[97] 9.8527
K2BiZr(PO4)6[98] 663.32 10.3036
KBaSc2(PO4)3[99] 503.25
KBaRZrP2SiO12 R=La, Nd, Sm, Eu, Gd, Dy, Y[2]
KBaYSnP2SiO12[2] 666.07
KBaFe2(PO4)3[100] 525.03 9.8732 (at 4K)
KBaCr2(PO4)3[101] 517.33 9.7890
Rb2FeTi(PO4)3[102] 511.56 9.8892 Na2FeTi(PO4)3 has NZP structure[81]
KBaMgTi(PO4)3[103] 485.51 9.914 KSrMgTi crystallises in kosnarite form
KPbMgTi(PO4)3[103] 555.39 9.8540 KSrMgTi in kosnarite form
RbBaMgTi(PO4)3[103] 9.954 531.88 CsBa does not form
RbPbMgTi(PO4)3[103] 601.76 9.9090 CsPb does not form
KSrMgZr(PO4)3[103] 479.16 10.165
KPbMgZr(PO4)3[103] 598.74 10.111
KBaMgZr(PO4)3[103] 528.87 10.106
RbSrMgZr(PO4)3[103] 525.53 10.218
RbPbMgZr(PO4)3[103] 645.11 10.178
RbBaMgZr(PO4)3[103] 575.24 10.178
CsSrMgZr(PO4)3[103] 572.97 10.561 over 1250 °C forms kosnarite phase
Ba3In4(PO4)6[104] 10.1129
Ba3V4(PO4)6[105] 1185.58 9.8825 4.08 yellow-green

Phosphate silicates

substance formula weight unit cell edge Å density comment
K2Sn2(PO4)2SiO4[106] Stable to 650°C
K2Zr2(PO4)2SiO4[106] Stable to 1000°C

Vanadates

The orthovanadates have four formula per cell, with a slightly distorted cell that has orthorhombic symmetry.

formula weight comment Cell dimensions Å Volume density refractive
Formula g/mol symmetries a b c index
LiBaCr2(VO4)3[107] 593.08 Orthorhombic 9.98 10.52 9.51 998 4.02
NaBaCr2(VO4)3[107] 609.13 Orthorhombic 9.99 10.52 9.53 1002 4.09
AgBaCr2(VO4)3[107] 694.00 Orthorhombic 10.02 10.53 9.53 1005 4.62

Arsenates

substance formula weight unit cell edge Å density
K2ScSn(AsO4)3[108] 658.62 10.3927
Zr2NH4(AsO4)3.H2O[109] 632.558 10.532 3.379

Selenates

Langbeinite structured double selenates are difficult to make, perhaps because selenate ions arranged around the dication leave space for water, so hydrates crystallise from double selenate solutions. For example, when ammonia selenate and cadmium selenate solution is crystallized it forms diammonium dicadmium selenate trihydrate: (NH4)2Cd2(SeO4)3•3H2O and when heated it loses both water and ammonia to form a pyroselenate rather than a langbeinite.[110]

substance formula weight unit cell edge Å density note
(NH4)2Mn2(SeO4)3[111] 574.83 10.53 3.26 forms continuous series with SO4 too

Molybdates

-

substance formula weight unit cell edge Å density
Cs2Cd2(MoO4)3[112] 970.5 11.239
Rb2Co2(MoO4)3 768.7
Cs2Co2(MoO4)3[113]
Cs2Ni2(MoO4)3[114] 863.01 10.7538
(H3O)2Mn2(MoO4)3[115] 627.75 10.8713
K2Mn2(MoO4)3[116]

Tungstates

substance formula weight unit cell edge Å density
Rb2Mg2(WO4)3[117] 963.06 10.766
Cs2Mg2(WO4)3[117] 1057.93 10.878

Preparation

Diammonium dicadmium sulfate can be made by evaporating a solution of ammonium sulfate and cadmium sulfate.[19] Dithallium dicadmium sulfate can be made by evaporating a water solution at 85 °C.[22] Other substances may be formed during crystallisation from water such as Tutton's salts or competing compounds like Rb2Cd3(SO4)4·5H2O.[118]

Potassium and ammonium nickel langbeinite can be made from nickel sulfate and the other sulfates by evaporating a water solution at 85 °C.[61]

Dipotassium dizinc sulfate can be formed into large crystals by melting zinc sulfate and potassium sulfate together at 753K. A crystal can be slowly drawn out of the melt from a rotating crucible at about 1.2 mm every hour.[119]

Li(H2O)2Hf2(PO4)3 can be made by heating HfCl4, Li2B4O7, H3PO4, water and hydrochloric acid to 180 °C for eight days under pressure.[84] Li(H2O)2Hf2(PO4)3 converts to Li2Hf2(PO4)3 on heating to 200 °C.[77]

The sol-gel method produces a gel from a solution mixture, which is then heated. Rb2FeZr(PO4)3 can be made by mixing solutions of FeCl3, RbCl, ZrOCl2, and dripping in H3PO4. The gel produced was dried out at 95 °C and then baked at various temperatures from 400 to 1100 °C.[79]

Langbeinites crystals can be made by the Bridgman technique, Czochralski process or flux technique.

A Tutton's salt may be heat treated and dehydrate, e.g. (NH4)2Mn2(SeO4)3 can be made from (NH4)2Mn(SeO4)3·6(H2O) heated to 100 °C, forming (NH4)2(SeO4) as a side product.[120] Similarly the ammonium vandadium Tutton's salt, (NH4)2V(SO4)2, heated to 160 °C in a closed tube produces (NH4)2V2(SO4)3. At lower temperatures a hydroxy compound is formed.[49]

Use

Few uses have been made of these substances. Lanbeinite itself can be used as an "organic" fertiliser with potassium, magnesium and sulfur, all needed for plant growth. Electrooptic devices could be made from some of these crystals, particularly those that have cubic transition temperatures as temperatures above room temperature. Research continues into this. Ferroelectric crystals could store information in the location of domain walls.

The phosphate langbeinites are insoluble, stable against heat, and can accommodate a large number of different ions, and have been considered for immobilizing unwanted radioactive waste.[121]

Rare earth containing zirconium phosphate langbeinites have been investigated for use in white LEDs and plasma displays.[98] Langbeinites that contain bismuth are photoluminescent.[98] In case of iron-containing ones complex magnetic behavior may be found.[122]

gollark: And isn't very good at them.
gollark: No you don't.
gollark: We tried it once as an experiment.
gollark: Yes, it's very, *very* hard.
gollark: The GTech™ public wormhole network?

References

  1. Norberg, Stefan T. (2002). "New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework". Acta Crystallographica B. 58 (5): 743–749. doi:10.1107/S0108768102013782. PMC 2391006. PMID 12324686.
  2. Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (October 2015). "New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage". Journal of Alloys and Compounds. 657: 422–429. doi:10.1016/j.jallcom.2015.10.088.
  3. Guelylah, A.; G. Madariaga; W. Morgenroth; M. I. Aroyo; T. Breczewski; E. H. Bocanegra (2000). "X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of langbeinite-type dithallium dicadmium sulfate". Acta Crystallographica Section B. 56 (6): 921–935. doi:10.1107/S0108768100009514.
  4. Guelylah, Abderrahim; Gotzon Madariaga (2003). "Dirubidium dicadmium sulfate at 293 K". Acta Crystallographica Section C. 59 (5): i32–i34. doi:10.1107/S0108270103007479.
  5. Guelylah, A.; M. I. Aroyo; J. M. Pérez-Mato (1996). "Microscopic distortion and order parameter in langbeinite K2Cd2(SO4)3". Phase Transitions. 59 (1–3): 155–179. doi:10.1080/01411599608220042.
  6. Zemann, Anna; J. Zemann (1957). "Die Kristallstruktur von Langbeinit, K2Mg2(SO4)3". Acta Crystallographica. 10 (6): 409–413. doi:10.1107/S0365110X57001346.
  7. Boujelben, Mohamed; Mohamed Toumi; Tahar Mhiri (2007). "Langbeinite-type Rb2Ca2(SO4)3". Acta Crystallographica Section E. 63 (7): i157. doi:10.1107/S1600536807027043.
  8. Martínez, M.L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E.H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry. 89 (1): 88–93. Bibcode:1990JSSCh..89...88M. doi:10.1016/0022-4596(90)90297-B.
  9. Солодовникова, С.Ф.; Солодовникова, В.А. (1997). "Новый тип строения в морфотропном ряду A+2M+2(MoO4)3: кристаллическая структура Rb2Cu2(MoO4)3" (PDF). ЖУРНАЛ структур. химии (in Russian). 38 (5): 914–921.
  10. Kiselyova, Nadezhda (September 1997). "Property Predictions for Multicomponent Compounds". Russian Academy of Sciences. Retrieved 6 July 2013.
  11. Guelylah, A.; T. Breczewski; G. Madariaga (1996). "A New Langbeinite: Dipotassium Dimanganese Tetrafluoroberyllate". Acta Crystallographica Section C. 52 (12): 2951–2954. doi:10.1107/S0108270196008827.
  12. Pies, W.; A. Weiss (1973). "A458, I.1.3 Complex fluorides and fluorine double salts". Key Elements: F, Cl, Br, I. Landolt-Börnstein - Group III Condensed Matter. 7a. pp. 91–103. doi:10.1007/10201462_9. ISBN 978-3-540-06166-3.
  13. Li, Hai-Yan; Dan Zhao (2011). "A new langbeinite-type phosphate: K2AlSn(PO4)3". Acta Crystallographica Section E. 67 (10): i56. doi:10.1107/S1600536811037263. PMC 3201338. PMID 22058680.
  14. Gustafsson, Joacim C. M.; Stefan T. Norberg; Göran Svensson (2006). "The langbeinite type Rb2TiY(PO4)3". Acta Crystallographica Section E. 62 (7): i160–i162. doi:10.1107/S1600536806021635.
  15. Hidouri, Mourad; Hasna Jerbi; Mongi Ben Amara (2008). "The iron phosphate NaBaFe2(PO4)3". Acta Crystallographica Section E. 64 (8): i51. doi:10.1107/S1600536808023040. PMC 2961906. PMID 21202994.
  16. Harrison, William T. A. (2010). "K2ScSn(AsO4)3: an arsenate-containing langbeinite". Acta Crystallographica Section C. 66 (7): i82–i84. doi:10.1107/S0108270110021670. PMID 20603547.
  17. Jona, F.; R. Pepinsky (1956). "Ferroelectricity in the Langbeinite System". Physical Review. 103 (4): 1126. Bibcode:1956PhRv..103.1126J. doi:10.1103/PhysRev.103.1126.
  18. McDowell, C.A.; P. Raghunathan; R. Srinivasan (1975). "Proton N.M.R. study of the dynamics of the ammonium ion in ferroelectric langbeinite, (NH4)2Cd2(SO4)3". Molecular Physics. 29 (3): 815–824. Bibcode:1975MolPh..29..815M. doi:10.1080/00268977500100721.
  19. Moriyoshi, C.; E. Magome; K. Itoh (28 March 2007). "Structural Study of Langbeinite-type (NH4)2Cd(SO4)3) Crystal in the High Temperature Phase" (PDF). IMF-11. Retrieved 24 June 2013.
  20. Glogarová, M.; C. Frenzel; E. Hegenbarth (1972). "The Behaviour of (NH4)2Cd2(SO4)3 under Pressure". Physica Status Solidi B. 53 (1): 369–372. Bibcode:1972PSSBR..53..369G. doi:10.1002/pssb.2220530139.
  21. Hikita, Tomoyuki; Makoto Kitabatake; Takuro Ikeda (1979). "Hydrostatic Pressure Effect on the Phase Transition of K2Mn2(SO4)3". Journal of the Physical Society of Japan. 46 (2): 695–696. Bibcode:1979JPSJ...46..695H. doi:10.1143/JPSJ.46.695.
  22. B̌rzina, B.; M. Glogarová (1972). "New ferroelectric langbeinite Tl2Cd2(SO4)3". Physica Status Solidi A. 11 (1): K39–K42. Bibcode:1972PSSAR..11...39.. doi:10.1002/pssa.2210110149.
  23. Deshmukh, B. T.; S. V. Bodade; S. V. Moharil (1986). "Thermoluminescence of K2Cd2(SO4)3". Physica Status Solidi A. 98 (1): 239–246. Bibcode:1986PSSAR..98..239D. doi:10.1002/pssa.2210980127.
  24. Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V. (2003). "Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor". Physica Status Solidi A. 198 (2): 322–328. Bibcode:2003PSSAR.198..322P. doi:10.1002/pssa.200306605.
  25. Léost, I.; Féraud, G.; Blanc-Valleron, M. M.; Rouchy, J. M. (2001). "First absolute dating of Miocene Langbeinite evaporites by 40Ar/39Ar laser step-heating: [K2Mg2(SO4)3] Stebnyk Mine (Carpathian Foredeep Basin)". Geophysical Research Letters. 28 (23): 4347–4350. Bibcode:2001GeoRL..28.4347L. doi:10.1029/2001GL013477.
  26. Franke, V.; E. Hegenbarth; B. Březina (1975). "Specific heat measurement on Tl2Cd2(SO4)3". Physica Status Solidi A. 28 (1): K77–K80. Bibcode:1975PSSAR..28...77F. doi:10.1002/pssa.2210280165.
  27. Abrahams, S. C.; J. L. Bernstein (1977). "Piezoelectric langbeinite-type K2Cd2(SO4)3: Room temperature crystal structure and ferroelastic transformation". The Journal of Chemical Physics. 67 (5): 2146. Bibcode:1977JChPh..67.2146A. doi:10.1063/1.435101.
  28. Cao, Hongjie; N. Kent Dalley; Juliana Boerio-Goates (1993). "Calorimetric and structural studies of langbeinite-type Tl2Cd2(SO4)3". Ferroelectrics. 146 (1): 45–56. doi:10.1080/00150199308008525.
  29. Sutera, A.; K. Nassau; S. C. Abrahams (1981). "Phase-transition variation with composition in solid solutions of K2Cd2(SO4)3 with Tl2Cd2(SO4)3". Journal of Applied Crystallography. 14 (5): 297–299. doi:10.1107/S0021889881009412.
  30. Percival, M. J. L. (1990). "Optical Absorption Spectroscopy of Doped Materials: The P213-P212121 Phase Transition in K2(Cd0.98Co0.02)2(SO4)3". Mineralogical Magazine. 54 (377): 525–535. doi:10.1180/minmag.1990.054.377.01.
  31. Zhou, Ya-Ping; Zhang Rui; Wan Hong-Wen; Zhan Zheng-Kun; Xu Ming-Fei (March 2001). "Thermochemical Studies on the Langbeinite-Type Double Sulfate Salts,(NH4)2Cd2(SO4)3 and K2Cd2(SO4)3". Acta Physico-Chimica Sinica (in Chinese). 17 (3): 247. doi:10.3866/PKU.WHXB20010312.
  32. Boerio-Goates, Juliana; JohanneI. Artman; BrianF. Woodfield (1990). "Heat capacity studies of phase transitions in langbeinites II. K2Mg2(SO4)3". Physics and Chemistry of Minerals. 17 (2): 173. Bibcode:1990PCM....17..173B. doi:10.1007/BF00199670.
  33. Trussov, I.A.; Male, L.L.; Sanjuan, M.L.; Orera, A.; Slater, P.R. (April 2019). "Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: A combined single crystal and variable temperature powder diffraction and Raman spectroscopy study". Journal of Solid State Chemistry. 272: 157–165. doi:10.1016/j.jssc.2019.02.014.
  34. Speer, D.; E. Salje (1986). "Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type M2++K2(SO4)3, M++=Mg, Ni, Co, Zn, Ca". Physics and Chemistry of Minerals. 13 (1): 17–24. Bibcode:1986PCM....13...17S. doi:10.1007/BF00307309.
  35. Burkov, V. I.; Z. B. Perekalina (2001). "Gyrotropy of Cubic Langbeinite Crystals". Inorganic Materials. 37 (3): 203–212. doi:10.1023/A:1004165926149.
  36. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 40. Retrieved 5 July 2013.
  37. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 50. Retrieved July 4, 2013.CS1 maint: multiple names: authors list (link)
  38. "Efremovite: Efremovite mineral information and data". www.mindat.org.
  39. Kahrizi, Mojtaba; M.O. Steinitz (1988). "Phase transitions and thermal expansion in langbeinite type compounds". Solid State Communications. 66 (4): 375–378. Bibcode:1988SSCom..66..375K. doi:10.1016/0038-1098(88)90860-5.
  40. AtomWork materials database at NIMS
  41. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 37. Retrieved July 4, 2013.CS1 maint: multiple names: authors list (link)
  42. "Calciolangbeinite" (PDF). Mineralogical Society of America. 13 June 2015. Retrieved 29 February 2016.
  43. "Calciolangbeinite: Mineral information, data and localities". www.mindat.org.
  44. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 39. Retrieved July 4, 2013.CS1 maint: multiple names: authors list (link)
  45. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 48. Retrieved June 17, 2013.CS1 maint: multiple names: authors list (link)
  46. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 12. Retrieved June 17, 2013.CS1 maint: multiple names: authors list (link)
  47. Gattow, G.; J. Zemann (1958). "Über Doppelsulfate vom Langbeinit-Typ, A2+B22+(SO4)3". Zeitschrift für Anorganische und Allgemeine Chemie. 293 (5–6): 233–240. doi:10.1002/zaac.19582930502.
  48. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 7. Retrieved 5 July 2013.
  49. Joseph Tudo, Gérard Laplace (July 1977). "Les sulfates doubles de vanadium et d'ammonium. I. Sur la schoenite de vanadium II et ammonium". Bulletin de la Société Chimique de France : Première Partie (7/8): 653–655.CS1 maint: uses authors parameter (link)
  50. NIMS search result
  51. Bellanca, A. (1947). Sulla simmetria della manganolangbeinite/ Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451–455.
  52. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 43. Retrieved 5 July 2013.
  53. Yamada, Noboru; Maeda, Masaki; Adachi, Hideaki (1981). "Structures of langbeinite-type dipotassium dimanganese sulfate in cubic and orthorhombic phases". Journal of the Physical Society of Japan. 50 (3): 907–913. Bibcode:1981JPSJ...50..907Y. doi:10.1143/jpsj.50.907.
  54. Swain, Diptikanta; T. N. Guru Row (2006). "Rb2Mn2(SO4)3, a new member of the langbeinite family". Acta Crystallographica Section E. 62 (6): m138–m139. doi:10.1107/S1600536806019490.
  55. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 52. Retrieved June 17, 2013.
  56. Hikita, T. (2005). "43B-6 (NH4)2Mn2(SO4)3-(NH4)2Mn2(SeO4)3". (NH4)2SO4 family ... K3BiCl6·2KCl·KH3F4. Inorganic Substances other than Oxides. Landolt-Börnstein - Group III Condensed Matter. 36B2. pp. 1–3. doi:10.1007/10552342_84. ISBN 9783540313533.
  57. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 76. Retrieved July 4, 2013.
  58. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 35. Retrieved 5 July 2013.
  59. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 59. Retrieved 5 July 2013.
  60. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 85. Retrieved 5 July 2013.
  61. Jayakumar, V. S.; I. Hubert Joe; G. Aruldhas (1995). "IR and single crystal Raman spectra of langbeinities M2 Ni2(SO4)3 (M = NH4, K)". Ferroelectrics. 165 (1): 307–318. doi:10.1080/00150199508228311.
  62. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 46. Retrieved 5 July 2013.
  63. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 72. Retrieved 5 July 2013.
  64. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 6. National Bureau of Standards. p. 54. Retrieved 5 July 2013.
  65. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 34. Retrieved July 4, 2013.CS1 maint: multiple names: authors list (link)
  66. Swanson, H. E.; McMurdie, H. F.; Morris, M. C. & Evans, E. H.. (September 1969). Standard X-ray Diffraction Powder Patterns: Section 7. Data for 81 Substances. Washington D.C: UNT Digital Library. p. 45. Retrieved July 4, 2013.CS1 maint: multiple names: authors list (link)
  67. Swanson, H. E.; H. F. McMurdie; M. C. Morris; E. H. Evans (September 1970). "Standard X-ray Diffraction Powder Patterns" (PDF). National Bureau of Standards Monograph 25 Section 8. National Bureau of Standards. p. 83. Retrieved 5 July 2013.
  68. Le Fur, Y.; Aléonard, S (August 1969). "Etude d'orthofluoroberyllates MeI2MeII2(BeF4)3 de structure langbeinite". Materials Research Bulletin. 4 (8): 601–615. doi:10.1016/0025-5408(69)90121-4.
  69. "CCDC Number: 1862371". Cambridge Crystallographic Data Centre. doi:10.1021/acs.inorgchem.8b02491&sid=acs.
  70. Shen, Yaoguo; Liu, Zhiqun; Yu, Hualiang; Zhou, Bi (April 2020). "Aliovalent-substituted synthesis for a non-centrosymmetric phosphate with enhanced nonlinear-optical response". Journal of Solid State Chemistry: 121361. doi:10.1016/j.jssc.2020.121361.
  71. Fu, Yun-Long; Zhi-Wei Xu, Jia-Lin Ren, Seik Weng Ng (2005). "Langbeinite-type mixed-valence (NH4)(H3O)TiIIITiIV(PO4)3". Acta Crystallographica Section E. 61 (8): i158–i159. doi:10.1107/S1600536805021392.CS1 maint: multiple names: authors list (link)
  72. Leclaire, A.; Benmoussa, A.; Borel, M.M.; Grandin, A.; Raveau, B. (February 1989). "K2−xTi2(PO4)3 with 0 ≤ x ≤ 0.5: A mixed-valence nonstoichiometric titanophosphate with the langbeinite structure". Journal of Solid State Chemistry. 78 (2): 227–231. Bibcode:1989JSSCh..78..227L. doi:10.1016/0022-4596(89)90101-1.
  73. Isasi, J (2 August 2000). "Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure". Solid State Ionics. 133 (3–4): 303–313. doi:10.1016/S0167-2738(00)00677-9.
  74. Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Shishkin, Oleg V. (November 2006). "Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure". Journal of Solid State Chemistry. 179 (11): 3461–3466. Bibcode:2006JSSCh.179.3461O. doi:10.1016/j.jssc.2006.07.015.
  75. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Puzan, Anna N. (May 2015). "Interaction in the molten system Rb2 O-P2 O5 -TiO -NiO. Crystal structure of the langbeinite-related Rb2Ni 0.5Ti1.5(PO4 )". Crystal Research and Technology. 50 (7): 549–555. doi:10.1002/crat.201500050.
  76. Zhao, Dan; Hao Zhang, Shu-Ping Huang, Wei-Long Zhang, Song-Lin Yang, Wen-Dan Cheng (2009). "Crystal and band structure of K2AlTi(PO4)3 with the langbeinite-type structure". Journal of Alloys and Compounds. 477 (1–2): 795–799. doi:10.1016/j.jallcom.2008.10.124.CS1 maint: multiple names: authors list (link)
  77. Chen, Shuang; Stefan Hoffmann, Katja Weichert, Joachim Maier, Yurii Prots, Jing-Tai Zhao, Rüdiger Kniep (2011). "Li(H2O)2−x[Zr2(PO4)3]: A Li-Filled Langbeinite Variant (x= 0) as a Precursor for a Metastable Dehydrated Phase (x= 2)". Chemistry of Materials. 23 (6): 1601–1606. doi:10.1021/cm103487w.CS1 maint: multiple names: authors list (link)
  78. Ogorodnyk, I. V.; I. V. Zatovsky; V. N. Baumer; N. S. Slobodyanik; O. V. Shishkin (2007). "Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1.822Nd0.822Zr1.178(PO4)3 and K2LuZr(PO4)3". Crystal Research and Technology. 42 (11): 1076–1081. doi:10.1002/crat.200710961.
  79. Trubach, I. G.; A. I. Beskrovnyi; A. I. Orlova; V. A. Orlova; V. S. Kurazhkovskaya (2004). "Synthesis and structural study of Rb2FeZr(PO4)3 phosphate with langbeinite structure". Crystallography Reports. 49 (6): 895–898. Bibcode:2004CryRp..49..895T. doi:10.1134/1.1828132.
  80. Orlova, Albina I.; Trubach, Ilya G.; Kurazhkovskaya, Victoria S.; Pertierra, Pilar (July 2003). "Synthesis, characterization, and structural study of K2FeZrP3O12 with the langbeinite structure". Journal of Solid State Chemistry. 173 (2): 314–318. Bibcode:2003JSSCh.173..314O. doi:10.1016/S0022-4596(03)00101-4.
  81. Asabina, E. A.; Pet’kov, V. I.; Gobechiya, E. R.; Kabalov, Yu. K.; Pokholok, K. V.; Kurazhkovskaya, V. S. (19 May 2009). "Synthesis and crystal structure of phosphates A2FeTi(PO4)3 (A = Na, Rb)". Russian Journal of Inorganic Chemistry. 53 (1): 40–47. doi:10.1134/S0036023608010075.
  82. Wulff, H.; Guth, U.; Loescher, B. (10 January 2013). "The Crystal Structure of K2REZr(PO4)3(RE = Y, Gd) Isotypic with Langbeinite". Powder Diffraction. 7 (2): 103–106. Bibcode:1992PDiff...7..103W. doi:10.1017/S0885715600018339.
  83. Ogorodnyk, Ivan V.; Igor V. Zatovsky; Nikolay S. Slobodyanik (2009). "Rietveld refinement of langbeinite-type K2YHf(PO4)3". Acta Crystallographica Section E. 65 (8): i63–i64. doi:10.1107/S1600536809027573. PMC 2977454. PMID 21583298.
  84. Chen, Shuang; Stefan Hoffmann, Horst Borrmann and Rüdiger Kniep; Borrmann, Horst; Kniep, Rüdiger (2011). "Crystal structure of a lithium-filled langbeinite variant, Li(H2O)2[Hf2(PO4)3]" (PDF). Z. Kristallogr. 226 (3): 299–300. doi:10.1524/ncrs.2011.0132. Retrieved 30 June 2013.
  85. Losilla, E (2 September 1998). "NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M=Cr, Fe): structure and ionic conductivity". Solid State Ionics. 112 (1–2): 53–62. doi:10.1016/S0167-2738(98)00207-0.
  86. Orlova, A. I.; A. K. Koryttseva; E. V. Bortsova; S. V. Nagornova; G. N. Kazantsev; S. G. Samoilov; A. V. Bankrashkov; V. S. Kurazhkovskaya (2006). "Crystallochemical modeling, synthesis, and study of new tantalum and niobium phosphates with a framework structure". Crystallography Reports. 51 (3): 357–365. Bibcode:2006CryRp..51..357O. doi:10.1134/S1063774506030011.
  87. Xue, Ya-Li; Zhao, Dan; Zhang, Shi-Rui; Li, Ya-Nan; Fan, Yan-Ping (30 January 2019). "A new disordered langbeinite-type compound, K2Tb1.5Ta0.5P3O12, and Eu3+ -doped multicolour light-emitting properties". Acta Crystallographica Section C. 75 (2): 213–220. doi:10.1107/S2053229619000998.
  88. Orlova, A. I.; Kitaev, D. B. (2005). "Anhydrous Lanthanide and Actinide(III) and (IV) Orthophosphates Mem(PO4)n. Synthesis, Crystallization, Structure, and Properties". Radiochemistry. 47 (1): 14–30. doi:10.1007/s11137-005-0041-6.
  89. Kumar, Sathasivam Pratheep; Buvaneswari Gopal (2014). "Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12". Journal of Alloys and Compounds. 615: 419–423. doi:10.1016/j.jallcom.2014.06.192. ISSN 0925-8388.
  90. El Hafid, Hassan; Matias Velázquez; Abdelaziz El Jazouli; Alain Wattiaux; Dany Carlier; Rodolphe Decourt; Michel Couzi; Philippe Goldner; Claude Delmas (2014). "Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A=Ca,Sr,Pb) series of powder compounds". Solid State Sciences. 36: 52–61. Bibcode:2014SSSci..36...52E. doi:10.1016/j.solidstatesciences.2014.07.011. ISSN 1293-2558.
  91. Hidouri, Mourad; López, María Luisa; Pico, Carlos; Wattiaux, Alain; Amara, Mongi Ben (December 2012). "Synthesis and characterization of a new iron phosphate KSrFe2(PO4)3 with a langbeinite type structure". Journal of Molecular Structure. 1030: 145–148. Bibcode:2012JMoSt1030..145H. doi:10.1016/j.molstruc.2012.04.002.
  92. Shpanchenko, R.V.; O.A. Lapshina, E.V. Antipov, J. Hadermann, E.E. Kaul, C. Geibel (2005). "New lead vanadium phosphate with langbeinite-typestructure: Pb 1.5 V 2 (PO 4 ) 3". Materials Research Bulletin. 40 (9): 1569–1576. doi:10.1016/j.materresbull.2005.04.037.CS1 maint: multiple names: authors list (link)
  93. Rangan, K.Kasthuri; Gopalakrishnan, J. (March 1994). "New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal". Journal of Solid State Chemistry. 109 (1): 116–121. Bibcode:1994JSSCh.109..116R. doi:10.1006/jssc.1994.1080.
  94. David, Rénald; Houria Kabbour; Dmitry Filimonov; Marielle Huvé; Alain Pautrat; Olivier Mentré (2014). "Reversible Topochemical Exsolution of Iron in BaFe2+2(PO4)2". Angewandte Chemie. 126 (49): 13583–13588. doi:10.1002/ange.201404476. ISSN 0044-8249.
  95. Pet’kov, V. I.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (3 February 2018). "Heat capacity measurements on Ba1.5Fe2(PO4)3 and its thermodynamic functions". Journal of Thermal Analysis and Calorimetry. 132: 353–364. doi:10.1007/s10973-017-6925-9.
  96. Jiao, Mengmeng; Lv, Wenzhen; Lv, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng (14 January 2015). "Optical Properties and Energy Transfer of Novel KSrSc2(PO4)3:Ce3+/Eu2+/Tb3+ Phosphor for White Light Emitting Diodes". Dalton Trans. 44 (9): 4080–4087. doi:10.1039/C4DT03906H. PMID 25623365.
  97. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S. (7 February 2015). "Crystal structure of langbeinite-related Rb K Co Ti (PO4 )3". Acta Crystallographica Section E. 71 (3): 251–253. doi:10.1107/S2056989015001826. PMC 4350725. PMID 25844179.
  98. Chornii, Vitalii; Hizhnyi, Yuriy; Nedilko, Sergiy G.; Terebilenko, Kateryna; Zatovsky, I.; Ogorodnyk, Ivan; Boyko, Volodymyr (June 2015). "Synthesis, Crystal Structure, Luminescence and Electronic Band Structure of K2BiZr(PO4)3 Phosphate Compound". Solid State Phenomena. 230: 55–61. doi:10.4028/www.scientific.net/SSP.230.55.
  99. Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng (20 July 2015). "Synthesis, Structure, and Photoluminescence Properties of Novel KBaSc2 (PO4 )3 :Ce/Eu/Tb Phosphors for White-Light-Emitting Diodes". ChemPhysChem. 16 (12): 2663–2669. doi:10.1002/cphc.201500387. PMID 26202348.
  100. Battle, Peter D.; Cheetham, Anthony K.; Harrison, William T.A.; Long, Gary J. (March 1986). "The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3". Journal of Solid State Chemistry. 62 (1): 16–25. Bibcode:1986JSSCh..62...16B. doi:10.1016/0022-4596(86)90211-2.
  101. Battle, P.D.; Gibb, T.C.; Nixon, S.; Harrison, W.T.A. (July 1988). "The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3". Journal of Solid State Chemistry. 75 (1): 21–29. Bibcode:1988JSSCh..75...21B. doi:10.1016/0022-4596(88)90299-x.
  102. Pet’kov, V. I.; Asabina, E. A.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (22 February 2016). "Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure". Journal of Thermal Analysis and Calorimetry. 124 (3): 1535–1544. doi:10.1007/s10973-016-5319-8.
  103. Pet’kov, V. I.; Alekseev, A. A.; Asabina, E. A.; Borovikova, E. Yu.; Koval’skii, A. M. (6 August 2017). "Synthesis, structure formation, and thermal expansion of A+M2+MgE4+(PO4)3". Russian Journal of Inorganic Chemistry. 62 (7): 870–878. doi:10.1134/S0036023617070178.
  104. Zhang, G.X.; Zhang, J.; Liu, Y.J.; Si, J.Y.; Tao, X.M.; Cai, G.M. (May 2019). "Structure and luminescence properties of multicolor phosphors with excellent thermal stability based on a new phosphate Ba3In4(PO4)6". Journal of Alloys and Compounds. doi:10.1016/j.jallcom.2019.05.059.
  105. Droß, Thomas; Glaum, Robert (20 March 2004). "The langbeinite-type barium vanadium(III) orthophosphate, Ba3V4(PO4) 6". Acta Crystallographica Section E. 60 (4): i58–i60. doi:10.1107/S1600536804005689.
  106. Balaji, Daneshwaran; Mandlimath, Triveni Rajashekhar; Kumar, Sathasivam Pratheep (February 2020). "Influence of tin substitution on negative thermal expansion of K2Zr2-xSnxP2SiO12 (x = 0 - 2) phosphosilicates ceramics". Ceramics International. doi:10.1016/j.ceramint.2020.02.181.
  107. Nabar, M. A.; Phanasgaonkar, D. S. (1 October 1980). "Preparation and X-ray powder diffraction studies of triple orthovanadates having langbeinite structure". Journal of Applied Crystallography. 13 (5): 450–451. doi:10.1107/s0021889880012514.
  108. Harrison, William T. A. (17 June 2010). "K2ScSn(AsO4)3 : an arsenate-containing langbeinite". Acta Crystallographica Section C. 66 (7): i82–i84. doi:10.1107/S0108270110021670. PMID 20603547.
  109. Rouse, Jessica (January 2010). "Compound IX:hydrated ammonium zirconium arsenate". Synthesis and Characterisation of Lanthanide and Other Inorganic Framework Materials (Thesis). University of Southampton, Faculty of Engineering, Science and Mathematics, School of Chemistry. p. 127. Retrieved 10 November 2015.
  110. Martínez, M.L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E.H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry. 89 (1): 88–93. Bibcode:1990JSSCh..89...88M. doi:10.1016/0022-4596(90)90297-B.
  111. Kohler, K.; Franke, W. (1 August 1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica (in German). 17 (8): 1088–1089. doi:10.1107/s0365110x64002833.
  112. Tsyrenova, G. D.; N. N. Pavlova (2011). "Synthesis, structure, and electrical and acoustic properties of Cs2Cd2(MoO4)3". Inorganic Materials. 47 (7): 786–790. doi:10.1134/S0020168511070235.
  113. Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Korolkov, Iliya V.; Stefanovich, Sergey Yu.; Kuchumov, Boris M. (23 November 2018). "Synthesis, structure and conductivity of alluaudite-related phases in the Na₂MoO₄-Cs₂MoO₄-CoMoO₄ system". European Journal of Inorganic Chemistry. doi:10.1002/ejic.201801307.
  114. Zolotova, E. S.; Solodovnikova, Z. A.; Ayupov, B. M.; Solodovnikov, S. F. (16 August 2011). "Phase formation in the Li2MoO4-A2MoO4-NiMoO4 (A = K, Rb, Cs) systems, the crystal structure of Cs2Ni2(MoO4)3, and color characteristics of alkali-metal nickel molybdates". Russian Journal of Inorganic Chemistry. 56 (8): 1216–1221. doi:10.1134/S0036023611080298.
  115. Yu, Yang; Liu, Dan; Hu, Wei-wei; Li, Jia; Peng, Yu; Zhou, Qi; Yang, Fen; Li, Guang-hua; Shi, Zhan (2012). "Synthesis, Structure and Characterization of Three Metal Molybdate Hydrates: Fe(H2O)2(MoO4)2·H3O, NaCo2(MoO4)2(H3O2) and Mn2(MoO4)3·2H3O". Chem Res. Chinese Universities. 28 (2): 186–190. Retrieved 10 November 2015.
  116. Gulyaeva, Oksana A.; Solodovnikova, Zoya A.; Solodovnikov, Sergey F.; Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Komarov, Vladislav Yu. (April 2019). "Subsolidus phase relations and structures of solid solutions in the systems K2MoO4–Na2MoO4–MMoO4 (M = Mn, Zn)". Journal of Solid State Chemistry. 272: 148–156. doi:10.1016/j.jssc.2019.02.010.
  117. Han, Shujuan; Wang, Ying; Jing, Qun; Wu, Hongping; Pan, Shilie; Yang, Zhihua (2015). "Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3(A = Na, K), R2Mg2 (WO 4) 3 (R = Rb, Cs)". Dalton Trans. 44 (12): 5810–5817. doi:10.1039/c5dt00332f. PMID 25715112.
  118. Swain, Diptikanta; T. N. Guru Row (2005). "Dirubidium tricadmium tetrakis(sulfate) pentahydrate" (PDF). Acta Crystallographica Section E. 61 (8): i163–i164. doi:10.1107/S1600536805021252.
  119. Yamada, N.; Tomoyuki Hikita; Kazuhiro Yamada (1981). "Pyroelectric properties of langbeinite-type K2Zn2(SO4)3". Ferroelectrics. 33 (1): 59–61. doi:10.1080/00150198108008070.
  120. Kohler, K.; W. Franke (1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica. 17 (8): 1088–1089. doi:10.1107/S0365110X64002833.
  121. Orlova, A. I.; V. A. Orlova, M. P. Orlova, D. M. Bykov, S. V. Stefanovskii, O. I. Stefanovskaya, B. S. Nikonov (2006). "The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste". Radiochemistry. 48 (4): 330–339. doi:10.1134/S1066362206040035.CS1 maint: multiple names: authors list (link)
  122. Slobodyanik, M. S.; N. S. Slobodyanik, K. V. Terebilenko, I. V. Ogorodnyk, I. V. Zatovsky, M. Seredyuk, V. N. Baumer, P. Gütlich (2012). "K2MIII2(MVIO4)(PO4)2 (MIII = Fe, Sc; MVI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties". Inorg. Chem. 51 (5): 1380–1385. doi:10.1021/ic201575v. PMID 22260084.CS1 maint: multiple names: authors list (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.