La Romana Men (volleyball club)

La Romana is the professional male volleyball team representing La Romana Province.

La Romana
Full nameLa Romana Men
Founded2007
GroundPolideportivo Eleoncio Mercedes
La Romana, La Romana
Chairman Amos Anglada
Head Coach Loren Ricardo
LeagueDominican Volleyball League
20103rd place
Uniforms
Home
Away

History

The team was founded in 2007.

Current squad

As of December 2008[1]

Number Player Position
1 Geudy Vargas
2 Francisco Liriano
3 Miguel De La Cruz
4 Juan Carlos Smith
5 Juan Mercedes
6 Reynaldo Núñez
7 Uriel Rijo
8 Rafael Solano
9 Eduardo Concepción
10 Jose Cabrera
11 Freddy Lizardo
12 Juan Carlos Lizardo
13 Loren Ricardo
14 Jhonatan Del Rosario
15 Eddy Guerrero
16 Richard Benjamin
17 Tomas Coats
18 Leony Vrennet Perez


  • Coach: Loren Ricardo
  • Assistant coach: Rene Beli
gollark: https://aphyr.com/posts/342-typing-the-technical-interview
gollark: If this worked as expected, in theory you could do```pythonraise quibble("abcd")```but alas, no.
gollark: But which runs much faster.
gollark: ```pythonfrom requests_futures.sessions import FuturesSessionimport concurrent.futures as futuresimport randomtry: import cPickle as pickleexcept ImportError: import pickletry: words_to_synonyms = pickle.load(open(".wtscache")) synonyms_to_words = pickle.load(open(".stwcache"))except: words_to_synonyms = {} synonyms_to_words = {}def add_to_key(d, k, v): d[k] = d.get(k, set()).union(set(v))def add_synonyms(syns, word): for syn in syns: add_to_key(synonyms_to_words, syn, [word]) add_to_key(words_to_synonyms, word, syns)def concat(list_of_lists): return sum(list_of_lists, [])def add_words(words): s = FuturesSession(max_workers=100) future_to_word = {s.get("https://api.datamuse.com/words", params={"ml": word}): word for word in words} future_to_word.update({s.get("https://api.datamuse.com/words", params={"ml": word, "v": "enwiki"}): word for word in words}) for future in futures.as_completed(future_to_word): word = future_to_word[future] try: data = future.result().json() except Exception as exc: print(f"{exc} fetching {word}") else: add_synonyms([w["word"] for w in data], word)def getattr_hook(obj, key): results = list(synonyms_to_words.get(key, set()).union(words_to_synonyms.get(key, set()))) if len(results) > 0: return obj.__getattribute__(random.choice(results)) else: raise AttributeError(f"Attribute {key} not found.")def wrap(obj): add_words(dir(obj)) obj.__getattr__ = lambda key: getattr_hook(obj, key)wrap(__builtins__)print(words_to_synonyms["Exception"])```New version which tends to reduce weirder output.
gollark: https://github.com/joelgrus/fizz-buzz-tensorflow/blob/master/Fizz%20Buzz%20in%20Tensorflow.ipynb

References

  1. FEDOVOLI. "Nomina Equipos" (PDF). Archived from the original (PDF) on 2011-06-01. Retrieved 2009-05-10.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.