Kalman–Yakubovich–Popov lemma

The Kalman–Yakubovich–Popov lemma is a result in system analysis and control theory which states: Given a number , two n-vectors B, C and an n x n Hurwitz matrix A, if the pair is completely controllable, then a symmetric matrix P and a vector Q satisfying

exist if and only if

Moreover, the set is the unobservable subspace for the pair .

The lemma can be seen as a generalization of the Lyapunov equation in stability theory. It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain.

The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich[1] where it was stated that for the strict frequency inequality. The case of nonstrict frequency inequality was published in 1963 by Rudolf E. Kalman[2]. In that paper the relation to solvability of the Lur’e equations was also established. Both papers considered scalar-input systems. The constraint on the control dimensionality was removed in 1964 by Gantmakher and Yakubovich[3] and independently by Vasile Mihai Popov[4]. Extensive review of the topic can be found in [5].

Multivariable Kalman–Yakubovich–Popov lemma

Given with for all and controllable, the following are equivalent:

  1. for all
  2. there exists a matrix such that and

The corresponding equivalence for strict inequalities holds even if is not controllable. [6]


gollark: Adopt a Coloured Rectangle! That's probably within reach of my art skills.
gollark: How do you search a specific thread?
gollark: What a shame.
gollark: Maybe patent the implementation of pagination via forward/backward links and URLs fetching subsets of data.
gollark: Yes, patenting pagination is stupid, but it could probably be done.

References

  1. Yakubovich, Vladimir Andreevich (1962). "The Solution of Certain Matrix Inequalities in Automatic Control Theory". Dokl. Akad. Nauk SSSR. 143 (6): 1304–1307.
  2. Kalman, Rudolf E. (1963). "Lyapunov functions for the problem of Lur'e in automatic control" (PDF). Proceedings of the National Academy of Sciences. 49 (2): 201–205. Bibcode:1963PNAS...49..201K. doi:10.1073/pnas.49.2.201. PMC 299777. PMID 16591048.
  3. Gantmakher, F.R. and Yakubovich, V.A. (1964). Absolute Stability of the Nonlinear Controllable Systems, Proc. II All-Union Conf. Theoretical Applied Mechanics. Moscow: Nauka.CS1 maint: multiple names: authors list (link)
  4. Popov, Vasile M. (1964). "Hyperstability and Optimality of Automatic Systems with Several Control Functions". Rev. Roumaine Sci. Tech. 9 (4): 629–890.
  5. Gusev S. V. and Likhtarnikov A. L. (2006). "Kalman-Popov-Yakubovich lemma and the S-procedure: A historical essay". Automation and Remote Control. 67 (11): 1768–1810. doi:10.1134/s000511790611004x.
  6. Anders Rantzer (1996). "On the Kalman–Yakubovich–Popov lemma". Systems & Control Letters. 28 (1): 7–10. doi:10.1016/0167-6911(95)00063-1.

B. Brogliato, R. Lozano, M. Maschke, O. Egeland, Dissipative Systems Analysis and Control, Springer Nature Switzerland AG, 3rd Edition, 2020 (chapter 3, pp.81-262), ISBN 978-3--030-19419-2

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.