Hydridonitride

A hydridonitride (nitridohydride, nitride hydride, or hydride nitride) is a chemical compound that contains hydride and nitride ions in a single phase. These compounds are distinct from inorganic amides and imides as the hydrogen does not share a bond with nitrogen, and contain a larger proportion of metals.

Structure

The hydride ion H is stabilised by being surrounded by electropositive elements such as alkalis or alkaline earths.[1] Quaternary compounds exist where nitrogen forms a complex with bonds to a transition or main group element. The hydride requires the presence of another alkaline earth element.[1]

Production

Hydridonitrides may be produced by a process called self-propagating high-temperature synthesis (SHS) where a metal nitride is ignited in a hydrogen atmosphere.[2]

A metal (Ti, Zr, Hf, Y) can also be ignited in an atmosphere mixing hydrogen and nitrogen, and a hydridonitride is formed exothermicly.[3]

The molten metal flux technique involves dissolving metal nitrides and hydrides in an excess of molten alkaline earth metal, by heating till everything is molten, and then cooling until crystals form, but the metal is still liquid. Draining the liquid metal (and centrifuging) leaves the crystals of hydridonitride behind. A eutectic molten metal allows it to be cooled more.[1]

If liquid alkali metal is used as a flux to grow a hydridonitride crystal, excess metal can be removed using liquid ammonia.[4]

Properties

Some hydridonitride are sensitive to water vapour in air.[5] For non-stoichimetric compounds, as the proportion of hydrogen increases, the unit cell dimensions also increase, so hydrogen is not merely filling holes.[6] When heated to a sufficiently high temperature, hydridonitrides lose hydrogen first to form a metallic nitride or alloy.[7]

List

name formula system space group unit cell structure comment optical reference
lithium nitride hydride
lithium hydridonitride
Li4NH tetrahedral I41/a a=4.9865 c=9.877 V=234.9 Z=4 yellow [4]
calcium hydridonitride Ca2NH cubic Fd3m a=10.13 Z=16 brown-black [5]
strontium hydridonitride Sr2NH R3m a = 3.870 c = 18.958 orange-yellow or black [8]
barium hydridonitride Ba2NH hexagonal R3m a=4.0262 c=20.469 pure H conductor [9]
Titanium hydridonitride TiN0.3H1.1 [6]
Ti0.6Nb0.4N0.4H1.1 [6]
zirconium hydridonitride ZrN0.17H1.65 [2]
Ti0.88Zr0.12N0.28H1.39 [6]
Zr0.7Nb0.3N0.33H1.15 [6]
Ti0.7V0.3N0.23H0.8 [6]
Hafnium hydridonitride HfNH0.6 hcp a=3.241 c=5.198 [7]
Hafnium hydridonitride HfNH hcp a=3.216 c=5.259 [7]
Thorium nitride hydride ThNH2 fcc a=5.596 [10]
Lithium distrontium dihydride nitride LiSr2H2N orthorhombic Pnma a = 7.4714, b = 3.7028 c = 13.2986 Z = 4 [SrH5N2]9−, [SrH4N3]11−, [LiH3N]5− [11]
hexacalcium dichromium hexanitride hydride Ca6Cr2N6H R3 a = 9.0042 and c = 9.1898 Z=3 planar CrN36−, CrN35−, octahedral Ca6H11+ [1][12]
Ba3CrN3H hexagonal P63/m a = 8.0270 and c = 5.6240 Z=2 planar CrN35−; octahedral Ba6H11+ [13][1]
tricalcium silicon trinitride hydride Ca3SiN3H monoclinic C2/c a=5.236 b=10.461 c=16.389 β=91.182° Z=8 SiN4 tetrahedra in chains, Ca6H octahedra [1][14]
Lithium dieuropium nitride trihydride LiEu2NH3 orthorhombic Pnma a=7.4213 b=3.6726, c=13.1281 Z = 4 [Eu3+H7N2]10– and [Eu2+H6N3]13– ruby red [15]
gollark: That was brief.
gollark: No.
gollark: Which is also possible, actually. Hm.
gollark: I think they just muck up GPS for particular locations.
gollark: One evil idea I had relating to that was to spoof GPS for specific IDs, so you could subtly mess up their location finding.

References

  1. Falb, Nathaniel W.; Neu, Jennifer N.; Besara, Tiglet; Whalen, Jeffrey B.; Singh, David J.; Siegrist, Theo (14 February 2019). "Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr". Inorganic Chemistry. 58 (5): 3302–3307. doi:10.1021/acs.inorgchem.8b03367. PMID 30762348.
  2. Aleksanyan, A.G; Aghajanyan, N.N; Dolukhanyan, S.K; Mnatsakanyan, N.L; Harutyunyan, Kh.S; Hayrapetyan, V.S (January 2002). "Thermal-radiation synthesis of zirconium hydridonitrides and carbohydrides" (PDF). Journal of Alloys and Compounds. 330-332: 559–563. doi:10.1016/S0925-8388(01)01519-5.
  3. Dolukhanyan, S. K.; Aleksanyan, A. G.; Shekhtman, V. Sh.; Hakobyan, H. G.; Mayilyan, D. G.; Aghadjanyan, N. N.; Abrahamyan, K. A.; Mnatsakanyan, N. L.; Ter-Galstyan, O. P. (2 July 2010). "Synthesis of transition metal hydrides and a new process for production of refractory metal alloys: An autoreview". International Journal of Self-Propagating High-Temperature Synthesis. 19 (2): 85–93. doi:10.3103/S1061386210020020.
  4. Niewa, R.; Zherebtsov, D. A. (January 2002). "Redetermination of the crystal structure of tetralithium mononitride monohydride, Li4NH". Zeitschrift für Kristallographie - New Crystal Structures. 217 (JG). doi:10.1524/ncrs.2002.217.jg.317. ISSN 2197-4578.
  5. Brice, Jean-Francois; Motte, Jean-Pierre; Courtois, Alain; Protas, Jean; Aubry, Jacques (February 1976). "Etude structurale de Ca2NH par diffraction des rayons X, diffraction des neutrons et résonance magnétique nucléaire du proton dans le solide" [Structural study on Ca2NH by X-ray-diffraction, neutron-diffraction and proton nuclear magnetic-resonance in the solid]. Journal of Solid State Chemistry. 17 (1–2): 135–142. doi:10.1016/0022-4596(76)90213-9.
  6. Hampton, Michael D.; Schur, Dmitry V.; Zaginaichenko, Svetlana Yu; Trefilov, V. I. (2012-12-06). "Structural Peculiarities of Multicomponent Hydridonitrides on the Basis of Metals of IV–V Groups Produced by SHS Method". Hydrogen Materials Science and Chemistry of Metal Hydrides. Springer Science & Business Media. p. 361. doi:10.1007/978-94-010-0558-6_35. ISBN 978-94-010-0558-6.
  7. Dolukhanyan, S (May 1995). "Interaction of hafnium with hydrogen and nitrogen in the combustion regime". International Journal of Hydrogen Energy. 20 (5): 391–395. doi:10.1016/0360-3199(94)00059-9.
  8. Sichla, Th.; Altorfer, F.; Hohlwein, D.; Reimann, K.; Steube, M.; Wrzesinski, J.; Jacobs, H. (1997). "Kristallstrukturbestimmung an einer Strontium-hydrid-imid-nitrid-Phase - Sr2(H)N/SrNH bzw. Sr2(D)N/SrND - mit Röntgen-, Neutronen- und Synchrotron-Strahlung". Zeitschrift für anorganische und allgemeine Chemie (in German). 623 (1–6): 414–422. doi:10.1002/zaac.19976230166. ISSN 0044-2313.
  9. ALTORFER, F; BUHRER, W; WINKLER, B; CODDENS, G; ESSMANN, R; JACOBS, H (May 1994). "H−-jump diffusion in barium-nitride-hydride Ba2NH". Solid State Ionics. 70-71: 272–277. doi:10.1016/0167-2738(94)90322-0.
  10. Peterson, D.T; Nelson, S.O (August 1981). "Equilibrium hydrogen pressures in the Th-N-H system". Journal of the Less Common Metals. 80 (2): 221–226. doi:10.1016/0022-5088(81)90095-3.
  11. Blaschkowski, Björn; Schleid, Thomas (November 2007). "Darstellung und Kristallstruktur des Lithium-Strontium-Hydridnitrids LiSr2H2N". Zeitschrift für anorganische und allgemeine Chemie. 633 (15): 2644–2648. doi:10.1002/zaac.200700315.
  12. Bailey, Mark S.; Obrovac, Mark N.; Baillet, Emilie; Reynolds, Thomas K.; Zax, David B.; DiSalvo, Francis J. (September 2003). "Ca 6 [Cr 2 N 6 ]H, the First Quaternary Nitride−Hydride". Inorganic Chemistry. 42 (18): 5572–5578. doi:10.1021/ic0343206. ISSN 0020-1669. PMID 12950205.
  13. Siegrist, Theo; Singh, David J.; Whalen, Jeffrey B.; Besara, Tiglet; Neu, Jennifer N.; Falb, Nathaniel W. "Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr4+". doi:10.26434/chemrxiv.7418429. Cite journal requires |journal= (help)
  14. Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (27 July 2017). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca8In2SiN4 and Semiconductor Ca3SiN3H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. PMID 28749660.
  15. Blaschkowski, Björn; Schleid, Thomas (August 2012). "Mixed-Valent Europium in the Nitride Hydride LiEu2NH3". Zeitschrift für anorganische und allgemeine Chemie. 638 (10): 1592. doi:10.1002/zaac.201204051.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.