Humbert series

In mathematics, Humbert series are a set of seven hypergeometric series Φ1, Φ2, Φ3, Ψ1, Ψ2, Ξ1, Ξ2 of two variables that generalize Kummer's confluent hypergeometric series 1F1 of one variable and the confluent hypergeometric limit function 0F1 of one variable. The first of these double series was introduced by Pierre Humbert (1920).

Definitions

The Humbert series Φ1 is defined for |x| < 1 by the double series:

where the Pochhammer symbol (q)n represents the rising factorial:

where the second equality is true for all complex except .

For other values of x the function Φ1 can be defined by analytic continuation.

The Humbert series Φ1 can also be written as a one-dimensional Euler-type integral:

This representation can be verified by means of Taylor expansion of the integrand, followed by termwise integration.

Similarly, the function Φ2 is defined for all x, y by the series:

the function Φ3 for all x, y by the series:

the function Ψ1 for |x| < 1 by the series:

the function Ψ2 for all x, y by the series:

the function Ξ1 for |x| < 1 by the series:

and the function Ξ2 for |x| < 1 by the series:

There are four related series of two variables, F1, F2, F3, and F4, which generalize Gauss's hypergeometric series 2F1 of one variable in a similar manner and which were introduced by Paul Émile Appell in 1880.
gollark: Most people apparently don't bother and just buy whatever has big numbers in the name.
gollark: For computer hardware, you can also just harvest perfectly good basic information on that online.
gollark: I just bought the cheapest one which had features such as "displaying the time", and it works fine.
gollark: Given that some reviews are bad, I mean.
gollark: No it doesn't. You can probably ask someone you know who knows about watches. Or look at watch reviews on the internet, although this is nontrivial.

References

  • Appell, Paul; Kampé de Fériet, Joseph (1926). Fonctions hypergéométriques et hypersphériques; Polynômes d'Hermite (in French). Paris: Gauthier–Villars. JFM 52.0361.13.CS1 maint: ref=harv (link) (see p. 126)
  • Bateman, H.; Erdélyi, A. (1953). Higher Transcendental Functions, Vol. I (PDF). New York: McGraw–Hill.CS1 maint: ref=harv (link) (see p. 225)
  • Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "9.26.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 0-12-384933-0. LCCN 2014010276. ISBN 978-0-12-384933-5.CS1 maint: ref=harv (link)
  • Humbert, Pierre (1920). "Sur les fonctions hypercylindriques". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 171: 490–492. JFM 47.0348.01.CS1 maint: ref=harv (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.