Hamiltonian vector field

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field, defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.[1]

Hamiltonian vector fields can be defined more generally on an arbitrary Poisson manifold. The Lie bracket of two Hamiltonian vector fields corresponding to functions f and g on the manifold is itself a Hamiltonian vector field, with the Hamiltonian given by the Poisson bracket of f and g.

Definition

Suppose that (M, ω) is a symplectic manifold. Since the symplectic form ω is nondegenerate, it sets up a fiberwise-linear isomorphism

between the tangent bundle TM and the cotangent bundle T*M, with the inverse

Therefore, one-forms on a symplectic manifold M may be identified with vector fields and every differentiable function H: MR determines a unique vector field XH, called the Hamiltonian vector field with the Hamiltonian H, by defining for every vector field Y on M,

Note: Some authors define the Hamiltonian vector field with the opposite sign. One has to be mindful of varying conventions in physical and mathematical literature.

Examples

Suppose that M is a 2n-dimensional symplectic manifold. Then locally, one may choose canonical coordinates (q1, ..., qn, p1, ..., pn) on M, in which the symplectic form is expressed as:[2]

where d denotes the exterior derivative and denotes the exterior product. Then the Hamiltonian vector field with Hamiltonian H takes the form:[1]

where Ω is a 2n × 2n square matrix

and

The matrix Ω is frequently denoted with J.

Suppose that M = R2n is the 2n-dimensional symplectic vector space with (global) canonical coordinates.

  • If then
  • if then
  • if then
  • if then

Properties

  • The assignment fXf is linear, so that the sum of two Hamiltonian functions transforms into the sum of the corresponding Hamiltonian vector fields.
  • Suppose that (q1, ..., qn, p1, ..., pn) are canonical coordinates on M (see above). Then a curve γ(t) = (q(t),p(t)) is an integral curve of the Hamiltonian vector field XH if and only if it is a solution of Hamilton's equations:[1]
  • The Hamiltonian H is constant along the integral curves, because . That is, H(γ(t)) is actually independent of t. This property corresponds to the conservation of energy in Hamiltonian mechanics.
  • More generally, if two functions F and H have a zero Poisson bracket (cf. below), then F is constant along the integral curves of H, and similarly, H is constant along the integral curves of F. This fact is the abstract mathematical principle behind Noether's theorem.[nb 1]
  • The symplectic form ω is preserved by the Hamiltonian flow. Equivalently, the Lie derivative

Poisson bracket

The notion of a Hamiltonian vector field leads to a skew-symmetric bilinear operation on the differentiable functions on a symplectic manifold M, the Poisson bracket, defined by the formula

where denotes the Lie derivative along a vector field X. Moreover, one can check that the following identity holds:[1]

where the right hand side represents the Lie bracket of the Hamiltonian vector fields with Hamiltonians f and g. As a consequence (a proof at Poisson bracket), the Poisson bracket satisfies the Jacobi identity:[3]

which means that the vector space of differentiable functions on M, endowed with the Poisson bracket, has the structure of a Lie algebra over R, and the assignment fXf is a Lie algebra homomorphism, whose kernel consists of the locally constant functions (constant functions if M is connected).

Remarks

  1. See Lee (2003, Chapter 18) for a very concise statement and proof of Noether's theorem.

Notes

  1. Lee 2003, Chapter 18.
  2. Lee 2003, Chapter 12.
  3. Lee 2003, Chaptter 18.

Works cited

  • Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 978-080530102-1.See section 3.2.
  • Arnol'd, V.I. (1997). Mathematical Methods of Classical Mechanics. Berlin etc: Springer. ISBN 0-387-96890-3.
  • Frankel, Theodore (1997). The Geometry of Physics. Cambridge University Press. ISBN 0-521-38753-1.
  • Lee, J. M. (2003), Introduction to Smooth manifolds, Springer Graduate Texts in Mathematics, 218, ISBN 0-387-95448-1
  • McDuff, Dusa; Salamon, D. (1998). Introduction to Symplectic Topology. Oxford Mathematical Monographs. ISBN 0-19-850451-9.
gollark: Is there other stuff other than the share price tweet thing?
gollark: A society with access to the computers and software necessary to decode the bee movie would also likely have the movie itself anyway. So you should put an archive of various software and technical documentation on too.
gollark: Ah, but flash memory loses data if it's left unpowered pretty fast. ~~He~~ You overthought the wrong bit of it. Blu ray discs would be better.
gollark: Though websites being bloated messes packed with inefficient programming, JS all the time for no reason, and ads doesn't help. My site is optimized for load speed, and I got core stuff down to about 20kB a page and do aggressive service worker caching, but most sites do *not* do this.
gollark: Web standards are insanely complex and getting more complicated by the day as they pile on more extensions for USB and Bluetooth and WebAssembly (though I like that one) and exotic CSS features.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.