Grothendieck inequality

In mathematics, the Grothendieck inequality states that there is a universal constant with the following property. If Mi,j is an n by n (real or complex) matrix with

for all (real or complex) numbers si, tj of absolute value at most 1, then

,

for all vectors Si, Tj in the unit ball B(H) of a (real or complex) Hilbert space H, the constant being independent of n. For a fixed Hilbert space dimension d, the smallest constant which satisfies this property for all n by n matrices is called a Grothendieck constant and denoted . In fact there are two Grothendieck constants, and , depending on whether one works with real or complex numbers, respectively.[1]

The Grothendieck inequality and Grothendieck constants are named after Alexander Grothendieck, who proved the existence of the constants in a paper published in 1953.[2]

Bounds on the constants

The sequences and are easily seen to be increasing, and Grothendieck's result states that they are bounded,[2][3] so they have limits.

With defined to be [4] then Grothendieck proved that: .

Krivine (1979)[5] improved the result by proving: , conjecturing that the upper bound is tight. However, this conjecture was disproved by Braverman et al. (2011).[6]

Grothendieck constant of order d

Boris Tsirelson showed that the Grothendieck constants play an essential role in the problem of quantum nonlocality: the Tsirelson bound of any full correlation bipartite bell inequality for a quantum system of dimension d is upperbounded by .[7][8]

Lower bounds

Some historical data on best known lower bounds of is summarized in the following table. Implied bounds are shown in italics.

d Grothendieck, 1953[2] Clauser et al., 1969[9] Davie, 1984[10] Fishburn et al., 1994[11] Vértesi, 2008[12] Briët et al., 2011[13] Hua et al., 2015[14] Diviánszky et al., 2017[15]
2 ≈ 1.41421
3 1.414211.417241.417581.4359
4 1.445211.445661.4841
5 ≈ 1.428571.460071.461121.4841
6 1.460071.470171.4841
7 1.462861.475831.4841
8 1.475861.479721.4841
9 1.48608
...
≈ 1.570791.67696

Upper bounds

Some historical data on best known upper bounds of :

d Grothendieck, 1953[2] Rietz, 1974[16] Krivine, 1979[5] Braverman et al., 2011[6] Hirsch et al., 2016[17]
2 ≈ 1.41421
3 1.51631.4644
4 ≈ 1.5708
...
8 1.6641
...
≈ 2.301302.261 ≈ 1.78221
gollark: None are safe, ignorant or not, however.
gollark: Philip Reeve had insufficient vision.
gollark: Therefore, California SOLVED.
gollark: Including houses.
gollark: So, if you construct giant bubbles of sealed lightweight resin or something in space containing vacuums, then deorbit them carefully, you can attack things to them and they float.

See also

References

  1. Pisier, Gilles (April 2012), "Grothendieck's Theorem, Past and Present", Bulletin of the American Mathematical Society, 49 (2): 237–323, arXiv:1101.4195, doi:10.1090/S0273-0979-2011-01348-9.
  2. Grothendieck, Alexander (1953), "Résumé de la théorie métrique des produits tensoriels topologiques", Bol. Soc. Mat. Sao Paulo, 8: 1–79, MR 0094682
  3. Blei, Ron C. (1987), "An elementary proof of the Grothendieck inequality", Proceedings of the American Mathematical Society, American Mathematical Society, 100 (1): 58–60, doi:10.2307/2046119, ISSN 0002-9939, JSTOR 2046119, MR 0883401
  4. Finch, Steven R. (2003), Mathematical constants, Cambridge University Press, ISBN 978-0-521-81805-6
  5. Krivine, J.-L. (1979), "Constantes de Grothendieck et fonctions de type positif sur les sphères", Advances in Mathematics, 31 (1): 16–30, doi:10.1016/0001-8708(79)90017-3, ISSN 0001-8708, MR 0521464
  6. Braverman, Mark; Makarychev, Konstantin; Makarychev, Yury; Naor, Assaf (2011), "The Grothendieck Constant is Strictly Smaller than Krivine's Bound", 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 453–462, arXiv:1103.6161, doi:10.1109/FOCS.2011.77
  7. Boris Tsirelson (1987). "Quantum analogues of the Bell inequalities. The case of two spatially separated domains" (PDF). Journal of Soviet Mathematics. 36 (4): 557–570. doi:10.1007/BF01663472.
  8. Acín, Antonio; Gisin, Nicolas; Toner, Benjamin (2006), "Grothendieck's constant and local models for noisy entangled quantum states", Physical Review A, 73 (6): 062105, arXiv:quant-ph/0606138, Bibcode:2006PhRvA..73f2105A, doi:10.1103/PhysRevA.73.062105
  9. Clauser, John F.; Horne, Michael A.; Shimony, Abner; Holt, Richard A. (1969), Proposed Experiment to Test Local Hidden-Variable Theories, 23, Physical Review Letters, p. 880
  10. Davie, A. M. (1984), Unpublished
  11. Fishburn, P. C.; Reeds, J. A. (1994), "Bell Inequalities, Grothendieck's Constant, and Root Two", SIAM Journal on Discrete Mathematics, 7 (1): 48–56, doi:10.1137/S0895480191219350
  12. Vértesi, Tamás (2008), "More efficient Bell inequalities for Werner states", Physical Review A, 78 (3): 032112, arXiv:0806.0096, Bibcode:2008PhRvA..78c2112V, doi:10.1103/PhysRevA.78.032112
  13. Briët, Jop; Buhrman, Harry; Toner, Ben (2011), "A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement", Communications in Mathematical Physics, 305 (3): 827, Bibcode:2011CMaPh.305..827B, doi:10.1007/s00220-011-1280-3
  14. Hua, Bobo; Li, Ming; Zhang, Tinggui; Zhou, Chunqin; Li-Jost, Xianqing; Fei, Shao-Ming (2015), "Towards Grothendieck Constants and LHV Models in Quantum Mechanics", Journal of Physics A: Mathematical and Theoretical, Journal of Physics A, 48 (6): 065302, arXiv:1501.05507, Bibcode:2015JPhA...48f5302H, doi:10.1088/1751-8113/48/6/065302
  15. Diviánszky, Péter; Bene, Erika; Vértesi, Tamás (2017), "Qutrit witness from the Grothendieck constant of order four", Physical Review A, 96 (1): 012113, arXiv:1707.04719, Bibcode:2017PhRvA..96a2113D, doi:10.1103/PhysRevA.96.012113
  16. Rietz, Ronald E. (1974), "A proof of the Grothendieck inequality", Israel Journal of Mathematics, 19 (3): 271–276, doi:10.1007/BF02757725
  17. Hirsch, Flavien; Quintino, Marco Túlio; Vértesi, Tamás; Navascués, Miguel; Brunner, Nicolas (2017), "Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant", Quantum, 1: 3, arXiv:1609.06114, Bibcode:2016arXiv160906114H, doi:10.22331/q-2017-04-25-3
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.