Graded category
If is a category, then a -graded category is a category together with a functor .
Monoids and groups can be thought of as categories with a single element. A monoid-graded or group-graded category is therefore one in which to each morphism is attached an element of a given monoid (resp. group), its grade. This must be compatible with composition, in the sense that compositions have the product grade.
Definition
There are various different definitions of a graded category, up to the most abstract one given above. A more concrete definition of a graded Abelian category is as follows:[1]
Let be an Abelian category and a monoid. Let be a set of functors from to itself. If
- is the identity functor on ,
- for all and
- is a full and faithful functor for every
we say that is a -graded category.
gollark: You are, in fact, my alt.
gollark: We can assume Tux1 is stationary for legal reasons.
gollark: I SAID I was IGNORING velocity.
gollark: Your rest energy is 6300000000000000000 joules. That's a lot of joules!
gollark: We're ignoring your velocity for now.
See also
- Differential graded category
- Graded (mathematics)
- Graded algebra
- Slice category
References
- Zhang, James J. (1 March 1996). "Twisted graded algebras and equivalences of graded categories" (PDF). Proceedings of the London Mathematical Society. s3-72 (2): 281–311. doi:10.1112/plms/s3-72.2.281. MR 1367080.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.