GTF3C4
General transcription factor 3C polypeptide 4 is a protein that in humans is encoded by the GTF3C4 gene.[5][6]
Interactions
GTF3C4 has been shown to interact with GTF3C2,[5] GTF3C1,[5] POLR3C[5][7] and GTF3C5.[5]
gollark: A "warmer sound" seems pretty nonsensical for *listening* to music, surely you just want maximum reproduction of the input signal from your DAC or whatever.
gollark: Despite, yes, it being lossless such that you can recover the original exactly from it.
gollark: Specifically, they apparently found FLAC worse somehow.
gollark: Yes, exactly.
gollark: There was one audiophile website which claimed that they had hearing-tested FLAC against WAV, and found they found WAV different somehow.
References
- GRCh38: Ensembl release 89: ENSG00000125484 - Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000035666 - Ensembl, May 2017
- "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG (Nov 1999). "The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity". Mol. Cell. Biol. 19 (11): 7697–704. doi:10.1128/mcb.19.11.7697. PMC 84812. PMID 10523658.
- "Entrez Gene: GTF3C4 general transcription factor IIIC, polypeptide 4, 90kDa".
- Hsieh YJ, Wang Z, Kovelman R, Roeder RG (Jul 1999). "Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III". Mol. Cell. Biol. 19 (7): 4944–52. doi:10.1128/mcb.19.7.4944. PMC 84305. PMID 10373544.
Further reading
- Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M (2007). "Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC". J. Biol. Chem. 282 (23): 17179–89. doi:10.1074/jbc.M611542200. PMID 17409385.
- Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
- Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Hsieh YJ, Wang Z, Kovelman R, Roeder RG (1999). "Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III". Mol. Cell. Biol. 19 (7): 4944–52. doi:10.1128/mcb.19.7.4944. PMC 84305. PMID 10373544.
- Jang KL, Collins MK, Latchman DS (1992). "The human immunodeficiency virus tat protein increases the transcription of human Alu repeated sequences by increasing the activity of the cellular transcription factor TFIIIC". J. Acquir. Immune Defic. Syndr. 5 (11): 1142–7. PMID 1403646.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.