Female sperm

Since the late 1980s, scientists have explored how to produce sperm where all of the chromosomes come from a female donor.[1] In the late 1990s, this concept became a partial reality when scientists in Japan developed chicken female sperm by injecting bone marrow stem cells from a female chicken into a rooster's testicles.[2] This technique proved to fall below expectations.

Female sperm can refer to either:

  1. A sperm which contains an X chromosome, produced in the usual way by a male, referring to the occurrence of such a sperm fertilizing an egg and giving birth to a female.
  2. A sperm which artificially contains genetic material from a female.

This article focuses on the second definition.

Female sperm production

Creating female sperm was first raised as a possibility in a patent filed in 1991[3] by injecting a woman's cells into a man's testicles, though the patent focused mostly on injecting altered male cells into a man's testes (to correct genetic diseases). In 1997, Japanese scientists partially confirmed such techniques by creating chicken female sperm in a similar manner. "However, the ratio of produced W chromosome-bearing (W-bearing) spermatozoa fell substantially below expectations. It is therefore concluded that most of the W-bearing PGC could not differentiate into spermatozoa because of restricted spermatogenesis."[2] These simple transplantation methods follow from earlier observations by developmental biologists that germ stem cells are autonomous in the sense that they can begin the processes to become both sperm and eggs.

One potential roadblock to injecting a woman's cells into a man's testicles is that the man's immune system might attack and destroy the woman's cells. In usual circumstances, when foreign cells (such as cells or organs from other people, or infectious bacteria) are put into a human body, its immune system will reject such cells or organs. However, a special property of a man's testicles is that they are immune-privileged, that is, a man's immune system will not attack foreign cells (such as a woman's cells) injected into the sperm-producing part of the testicles. Thus, a woman's cells will remain in the man's testicles long enough to be converted into sperm.

However, there are more serious challenges. Biologists have well established that male sperm production relies on certain genes on the Y chromosome, which, when missing or defective, lead to such men producing little to no sperm in their testicles. An analogy, then, is that a cell from a woman has complete Y chromosome deficiency. While many genes on the Y chromosome have backups (homologues) on other chromosomes, a few genes such as RBMY on the Y chromosome do not have such backups, and their effects must be compensated for to convert cells from a woman into sperm. In 2007, a patent application was filed[4] on methods for creating human female sperm using artificial or natural Y chromosomes and testicular transplantation.[5] Key to successful creation of female sperm (and male eggs) will be inducing male epigenetic markings for female cells that initially have female markings, with techniques for doing so disclosed in the patent application.[6]

In 2018 Chinese research scientists produced 29 viable mice offspring from two female mother mice by creating sperm-like structures from haploid embryonic stem cells using gene editing to alter imprinted regions of DNA. Experts noted that there was little chance of these techniques being applied to humans in the near future.[7][8]

Bone marrow stem cell conversion

Scientists from the University of Newcastle upon Tyne led by biologist Karim Nayernia discovered a method of creating partly developed sperm cells, otherwise known as "spermatogonial" stem cells, from the bone marrow of male volunteers, entirely in-vitro (outside the human body), and is seeking funding to see whether such techniques can be used to make female sperm.[9]

Same-sex procreation

If created, a "female sperm" cell could fertilize an egg cell, a procedure that, among other potential applications, might enable female same-sex couples to produce a child who would be the biological offspring of their two mothers. It is also claimed that production of female sperm may stimulate a woman to be both the mother and father (similar to asexual reproduction) of an offspring produced by her own sperm. Many queries, both ethical and moral, arise over these arguments.[10][11][12][13]

gollark: We don't have pasta as there is seemingly no pasta emoji.
gollark: Otherwise, we are not a bakery.
gollark: Except undifferentiated generic bread: 🍞 🥖 🫓 🥙
gollark: No. We do not have baked goods here.
gollark: Greetings.

See also

References

  1. "BIBLIOGRAPHY and TIMELINE". Human Samesex Reproduction Project.
  2. Tagami, Takahiro; Matsubara, Yuko; Hanada, Hirofumi; Naito, Mitsuru (June 1997). "Differentiation of female chicken primordial germ cells into spermatozoa in male gonads". Development, Growth and Differentiation. 39 (3): 267–71. doi:10.1046/j.1440-169X.1997.t01-2-00002.x. PMID 9227893.
  3. "Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny". U.S. Patent Office. Retrieved 2013-11-09.
  4. "Methods for Female Mammalian Spermatogenesis and Male Mammalian Oogenesis Using Synthetic Nanobiology" (PDF). Gregory Aharonian. Retrieved 2013-11-09.
  5. "Color illustration of female sperm making procress" (PDF). Human Samesex Reproduction Project. Retrieved 2013-11-09.
  6. "EPIGENETICS: the key to healthy female sperm". Human Samesex Reproduction Project. Retrieved 2013-11-09.
  7. Blakely, Rhys (2018-10-12). "No father necessary as mice are created with two mothers". The Times. ISSN 0140-0460. Retrieved 2018-10-12.
  8. Li, Zhi-Kun; Wang, Le-Yun; Wang, Li-Bin; Feng, Gui-Hai; Yuan, Xue-Wei; Liu, Chao; Xu, Kai; Li, Yu-Huan; Wan, Hai-Feng (2018-10-01). "Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions". Cell Stem Cell. 23 (5): 665–676.e4. doi:10.1016/j.stem.2018.09.004. ISSN 1934-5909. PMID 30318303.
  9. McVeigh, Karen (2009-07-08). "Scientists claim breakthrough in growing human sperm from stem cells". London: The Guardian.
  10. "Early-stage sperm cells created". Newcastle University. 2007-04-13. Archived from the original on 2013-11-09.
  11. Highfield, Roger (2007-04-14). "Women may be able to grow own sperm". London: Daily Telegraph. Retrieved 2010-05-02.
  12. Connor, Steve (2007-04-13). "The prospect of all-female conception". London: The Independent. Archived from the original on 2011-01-06. Retrieved 2010-05-02.
  13. "Bone stem cells turned into primitive sperm cells". New Scientist. 2007-04-13.

[1]

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.