Electrochemical scanning tunneling microscope

The electrochemical scanning tunneling microscope (ESTM) is a scanning tunneling microscope that measures the structures of surfaces and electrochemical reactions in solid-liquid interfaces at atomic or molecular scales.[1][2]

Development

Electrochemical reactions occur in electrolytic solutionsfor example electroplating, etching, batteries, and so on. On the electrode surface, many atoms, molecules, and ions adsorb and affect the reactions. In the past, in order to obtain information about the structure of electrode surfaces and reactions, the sample electrode was taken out of the electrolytic solution and measured under ultra high vacuum (UHV) conditions. In this case, the structure of the surface changed and could not be observed precisely. By using this microscope, however, these problems are resolved.

Operation

In electrolytic solutions, a complicated electrical double layer of H2O molecules and anions is formed. In this layer, as the distribution of anions changes with the potential of the electrode, it is necessary to control the reaction on the electrode. The potentials of the working electrodes (the sample and the tip) are controlled independently against a reference electrode. In this case, the tunneling bias voltage is the difference between the two potentials. A counter electrode is used to complete the current-carrying circuits with the working electrodes. By using these four electrodes, the electrochemical reaction is controlled precisely by the external voltage, and the surface in liquid can be observed.

gollark: Command? This is a really inefficient way to obfuscate just a single Li-NUX command.
gollark: Anyway, that command is very safe and Lin-UX users should run it.
gollark: This module contains functions that can read and write Python values in a binary format. The format is specific to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between Python versions (although it rarely does). [1]This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and writing the “pseudo-compiled” code for Python modules of .pyc files. Therefore, the Python maintainers reserve the right to modify the marshal format in backward incompatible ways should the need arise. If you’re serializing and de-serializing Python objects, use the pickle module instead – the...
gollark: Well, it loads things.
gollark: <@593113791252660224>

References

  1. Itaya, Kingo; Tomita, Eisuke (1988). "Scanning tunneling microscope for electrochemistry - a new concept for the in situ scanning tunneling microscope in electrolyte solutions". Surface Science. 201 (3): L507–L512. Bibcode:1988SurSc.201L.507I. doi:10.1016/0039-6028(88)90489-X. ISSN 0039-6028.
  2. Allen J. Bard; Michael V. Mirkin (16 April 2012). Scanning Electrochemical Microscopy, Second Edition. CRC Press. pp. 1–. ISBN 978-1-4398-3112-0.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.