Diisopropylamine
Diisopropylamine is a secondary amine with the chemical formula (CH3)2HC-NH-CH(CH3)2. It is best known as its lithium derivative of its conjugate base, lithium diisopropylamide, known as "LDA". LDA is a strong, non-nucleophilic base.
Names | |
---|---|
Preferred IUPAC name
N-(Propan-2-yl)propan-2-amine | |
Other names
Di(propan-2-yl)amine N-Isopropylpropan-2-amine (Diisopropyl)amine (The name diisopropylamine is deprecated.) | |
Identifiers | |
3D model (JSmol) |
|
Abbreviations | DIPA |
605284 | |
ChemSpider | |
ECHA InfoCard | 100.003.235 |
EC Number |
|
PubChem CID |
|
RTECS number |
|
UNII | |
UN number | 1158 |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C6H15N | |
Molar mass | 101.193 g·mol−1 |
Appearance | Colorless liquid |
Odor | Fishy, ammoniacal |
Density | 0.722 g mL−1 |
Melting point | −61.00 °C; −77.80 °F; 212.15 K |
Boiling point | 83 to 85 °C; 181 to 185 °F; 356 to 358 K |
miscible[1] | |
Vapor pressure | 9.3 kPa (at 20 °C)[2] |
Acidity (pKa) | 11.07 (in water) (conjugate acid) |
Basicity (pKb) | 3.43[3] |
Refractive index (nD) |
1.392–1.393 |
Thermochemistry | |
Std enthalpy of formation (ΔfH⦵298) |
−173.6 to −168.4 kJ mol−1 |
Std enthalpy of combustion (ΔcH⦵298) |
−4.3363 to −4.3313 MJ mol−1 |
Hazards | |
GHS pictograms | |
GHS Signal word | Danger |
GHS hazard statements |
H225, H302, H314, H332 |
P210, P280, P305+351+338, P310 | |
NFPA 704 (fire diamond) | |
Flash point | −17 °C (1 °F; 256 K) |
315 °C (599 °F; 588 K) | |
Explosive limits | 1.1–7.1%[1] |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
|
LC50 (median concentration) |
1140 ppm (rat, 2 hr) 1000 ppm (mouse, 2 hr)[4] |
LCLo (lowest published) |
2207 ppm (rabbit, 2.5 hr) 2207 ppm (guinea pig, 80 min) 2207 ppm (cat, 72 min)[4] |
NIOSH (US health exposure limits): | |
PEL (Permissible) |
TWA 5 ppm (20 mg/m3) [skin][1] |
REL (Recommended) |
TWA 5 ppm (20 mg/m3) [skin][1] |
IDLH (Immediate danger) |
200 ppm[1] |
Related compounds | |
Related amines |
|
Related compounds |
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[5]
Reactions and uses
Diisopropylamine is primarily used as a precursor to two herbicides, diallate and triallate, as well as certain sulfenamides used in the vulcanization of rubber.[6] It is also used to prepare N,N-Diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[7]
The bromide salt of diisopropylamine, diisopropylammonium bromide, is an organic molecular solid whose crystals are ferroelectric at room temperature.[8] This renders it a possible more biospherically inert alternative to barium titanate.
Preparation
Diisopropylamine is commercially available. It may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[9][10]
- NH
3 + 2(CH
3)
2CO + 2H
2 → C
6H
15N + 2H
2O
Toxicity
Causes burns by all exposure routes. Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting.[11]
References
- NIOSH Pocket Guide to Chemical Hazards. "#0217". National Institute for Occupational Safety and Health (NIOSH).
- April 2019 "DIISOPROPYLAMINE" Check
|url=
value (help). - "DIISOPROPYLAMINE". pub chem. NIH. Retrieved 20 October 2015.
- "Diisopropylamine". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
- Armarego, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals 4th Ed. pg 186, Butterworth and Heinemann: Boston, 1996.
- Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_001
- Hünig, S.; Kiessel, M. (1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen". Chemische Berichte. 91 (2): 380–392. doi:10.1002/cber.19580910223.
- "An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors". phys.org. Jan 24, 2013.
- Karl Löffler (1910). "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen" (PDF). Berichte. 43 (2): 2031–2035. doi:10.1002/cber.191004302145.
- US 2686811, Willard Bull, "One-step process for preparing diisopropylamine"
- "SAFETY DATA SHEET--Triethylamine". ThermoFisher Scientific. Jan 17, 2018. Retrieved June 18, 2020.