Desulfobacteraceae

The Desulfobacteraceae are a family of Proteobacteria. They are reducing sulfates to sulfides to obtain energy and are strictly anaerobic. They have a respiratory and fermentative type of metabolism. Some species are chemolithotrophic and use inorganic materials to obtain energy and use hydrogen as their electron donor.

Desulfobacteraceae
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Desulfobacteraceae
Genera

Desulfatibacillum
Desulfatiferula
Desulfatirhabdium
Desulfatitalea
Desulfobacter
Desulfobacterium
Desulfobacula
Desulfobotulus
Desulfocella
Desulfococcus
Desulfoconvexum
Desulfofaba
Desulfofrigus
Desulfoluna
Desulfonatronobacter
Desulfonema
Desulforegula
Desulfosalsimonas
Desulfosarcina
Desulfospira
Desulfotignum
Phorcysia

Biology and biochemistry

Morphology

Desulfobacteraceae vary widely in shape and size across the family. Desulfofaba are straight or slightly curved rods that range in size from 0.8-2.1 x 3.2-6.1 μm. Those in the genus Desulfobacterium are spherical or oval shaped and somewhat smaller, ranging in size from 0.9-1.3 x 1.5-3.0 μm or 1.5-2.0 x 2.0-2.5 μm. They stain Gram-negative and are not known to produce spores. Some species contain a single polar flagellum used for motility.

Genus and species of Desulfobacteraceae may only be definitively distinguished by analysis of 16S rDNA sequences, but certain genera may be determined through physiological characteristics alone. Desulfofrigus displays an optimal growth rate at very low temperatures compared to other sulfate reducing bacteria. It is also unable to grow in the presence of propionate.

Metabolism

Most species of Desulfobacteraceae use sulfur compounds as their main energy source. The most common source used is sulfate which, through metabolic processes, is reduced to sulfide. In an environment with little or no sulfate, sulfite or elemental sulfur may also be used and reduced into sulfide. In rare cases nitrate may also be used as a food source and reduced into ammonia. They have very efficient sulfate reduction rates (between 12 and 423 mu mol/dm3 day−1) in optimal conditions.[1]

Habitat

Desulfobacteraceae may be found in a range of locations but are most often found in saline and hypersaline waters including salt lakes and the ocean. They have also been found in polar ice in Antarctica. They may be found trapped within ice, floating within the water column, or living on or in other organisms such as sea sponges.[2]

gollark: Otherwise it turns off.
gollark: Basically, the top one transmits the powercell's fullness level (obtained via a computercraft thing since comparators appear to not work) and the bottom one receives that, reads the reactor's buffer level (it was meant to be heat but somehow I just get the RF output buffer level), and if the powercell is below full and the buffer empty it turns the reactor on.
gollark: Some screenshots of the controllers.
gollark: TIS-100 is a weird massively-parallel architecture of nodes running simple assembly programs communicating with each other.
gollark: TIS-3D is basically TIS-100 in Minecraft.

References

Notes
  1. "Web of Science [v.5.19] - All Databases Full Record". apps.webofknowledge.com. Retrieved 2015-10-16.
  2. Ahn, Young-Beom; Kerkhof, Lee J.; Häggblom, Max M. (2009-09-01). "Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba". International Journal of Systematic and Evolutionary Microbiology. 59 (Pt 9): 2133–2139. doi:10.1099/ijs.0.005884-0. ISSN 1466-5026. PMID 19605712.
Sources
  • Ahn, Y.-B., L. J. Kerkhof, and M. M. Haggblom. "Desulfoluna Spongiiphila Sp. Nov., a Dehalogenating Bacterium in the Desulfobacteraceae from the Marine Sponge Aplysina Aerophoba." International Journal of Systematic And Evolutionary Microbiology 59.9 (2009): 2133-139.
  • Foti, M., D. Y. Sorokin, B. Lomans, M. Mussman, E. E. Zacharova, N. V. Pimenov, J. G. Kuenen, and G. Muyzer. "Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes." Applied and Environmental Microbiology 73.7 (2007): 2093-100.
  • Garrity, George M.; Brenner, Don J.; Krieg, Noel R.; Staley, James T. (eds.) (2005). Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN 978-0-387-24145-6.
  • Purcell, Alicia M. et al. “Microbial Sulfur Transformations in Sediments from Subglacial Lake Whillans.” Frontiers in Microbiology 5 (2014): 594. PMC. Web. 20 Oct. 2015.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.