Dember effect

In physics, the Dember effect is when the electron current from a cathode subjected to both illumination and a simultaneous electron bombardment is greater than the sum of the photoelectric current and the secondary emission current .[1]

History

Discovered by Harry Dember (1882–1943) in 1925, this effect is due to the sum of the excitations of an electron by two means: photonic illumination and electron bombardment (i.e. the sum of the two excitations extracts the electron). In Dember’s initial study, he referred only to metals; however, more complex materials have been analyzed since then.

Photoelectric effect

The photoelectric effect due to the illumination of the metallic surface extracts electrons (if the energy of the photon is greater than the extraction work) and excites the electrons which the photons don’t have the energy to extract.

In a similar process, the electron bombardment of the metal both extracts and excites electrons inside the metal.

If one considers a constant and increases , it can be observed that has a maximum of about 150 times .

On the other hand, considering a constant and increasing the intensity of the illumination the , supplementary current, tends to saturate. This is due to the usage in the photoelectric effect of all the electrons excited (sufficiently) by the primary electrons of .

gollark: Well, it might, if it existed, which it doesn't.
gollark: Did you know it can do:- full text search- efficient geospatial lookups- multi-terabyte databases- window functions, virtual tables and other nice SQL features- queries involving multiple databases- user-defined functions- recursive table definitions (allowing for accursedness like mandelbrot things)- diffing of databases- small blob lookup faster than the filesystem- JSON queries???!?!?!?!
gollark: SQLite is in fact EXTREMELY based, with a pH in excess of 12.
gollark: I, for one, think it's important to know where bears are before they may become a problem.
gollark: Perhaps the idea of *Macron* is the trojan horse. I have after all been influencing its nonexistence.

See also

References

  1. Karlheinz Seeger (29 June 2013). Semiconductor Physics: An Introduction. Springer Science & Business Media. pp. 151–. ISBN 978-3-662-05025-5.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.