Connected ring

In mathematics, especially in the field of commutative algebra, a connected ring is a commutative ring A that satisfies one of the following equivalent conditions:[1]

Examples and non-examples

Connectedness defines a fairly general class of commutative rings. For example, all local rings and all (meet-)irreducible rings are connected. In particular, all integral domains are connected. Non-examples are given by product rings such as Z × Z; here the element (1, 0) is a non-trivial idempotent.

Generalizations

In algebraic geometry, connectedness is generalized to the concept of a connected scheme.

gollark: Your "solution" does not make sense.
gollark: But then we moved to contactless because convenience, and it's *less* secure.
gollark: But we moved to the chip thing because it's more secure; I think they do some sort of asymmetric crypto thing.
gollark: Cards used to use magnetic strips.
gollark: * [REDACTED]

References

  1. Jacobson 1989, p 418.
  • Jacobson, Nathan (1989), Basic algebra. II (2 ed.), New York: W. H. Freeman and Company, pp. xviii+686, ISBN 0-7167-1933-9, MR 1009787
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.