Circolo Matematico di Palermo

The Circolo Matematico di Palermo (Mathematical Circle of Palermo) is an Italian mathematical society, founded in Palermo by Sicilian geometer Giovanni B. Guccia in 1884.[1] It began accepting foreign members in 1888,[1] and by the time of Guccia's death in 1914 it had become the foremost international mathematical society, with approximately one thousand members.[2] However, subsequently to that time it declined in influence.[1]

Publications

Rendiconti del Circolo Matematico di Palermo
DisciplineMathematics
LanguageEnglish
Edited byC. Ciliberto
G. Dal Maso
Pasquale Vetro
Publication details
HistorySeries 1: 1888–1941
Series 2: 1952—
Publisher
FrequencyTriannual
limited
Standard abbreviations
ISO 4Rend. Circ. Mat. Palermo
Indexing
ISSN0009-725X (print)
1973-4409 (web)
Links

Rendiconti del Circolo Matematico di Palermo, the journal of the society, was published in a first series from 1885 to 1941 and in a second ongoing series beginning in 1952. Since 2008 it has been published by Springer Science+Business Media; current editors are C Ciliberto, G. Dal Maso, and Pasquale Vetro.[3]

Influential papers published in the Rendiconti include Henri Poincaré's On the Dynamics of the Electron (1906). The Rendiconti also provided the introduction of normal numbers,[4] the original publications of the Plancherel theorem[5] and Carathéodory's theorem,[6] Hermann Weyl's proof of the equidistribution theorem,[7] and one of the appendices to Henri Poincaré's "Analysis Situs".[8]

gollark: Meanwhile, GPT-3, OpenAI's latest GPT text generation thing, has *175 billion* parameters and uses, what, tens of gigabytes of memory?
gollark: No, lambda calculus is a relatively simple model you can understand fairly easily.
gollark: And with neural networks, you don't actually know *how* the network does its job, just that you feed in pixels and somehow get classification data out.
gollark: There is still not, as far as I know, an approach to detect what an object is other than just training neural networks on the task.
gollark: It's simple to say, for example, "the program should detect if something is a bird", but incredibly hard to actually explain how to detect birds.

References

  1. The Mathematical Circle of Palermo, The MacTutor History of Mathematics archive, retrieved 2011-06-19.
  2. Grattan-Guinness, Ivor (2000), Rainbow of Mathematics: A History of the Mathematical Sciences, W. W. Norton & Company, p. 656, ISBN 978-0-393-32030-5.
  3. Rendiconti del Circolo Matematico di Palermo, Springer Science+Business Media, accessed 2011-06-19.
  4. Borel, E. (1909), "Les probabilités dénombrables et leurs applications arithmétiques", Rendiconti del Circolo Matematico di Palermo, 27: 247–271, doi:10.1007/BF03019651.
  5. Plancherel, Michel; Mittag-Leffler (1910), "Contribution à l'étude de la représentation d'une fonction arbitraire par les intégrales définies", Rendiconti del Circolo Matematico di Palermo, 30 (1): 289–335, doi:10.1007/BF03014877.
  6. Carathéodory, C. (1911), "Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen", Rendiconti del Circolo Matematico di Palermo, 32: 193–217, doi:10.1007/bf03014795.
  7. Weyl, H. (1910), "Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene", Rendiconti del Circolo Matematico di Palermo, 30 (1): 377–407, doi:10.1007/BF03014883.
  8. Poincaré, Henri (1899), "Complément à l'Analysis Situs", Rendiconti del Circolo Matematico di Palermo, 13: 285–343, doi:10.1007/BF03024461.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.