Chrome plating

Chrome plating (less commonly chromium plating), often referred to simply as chrome, is a technique of electroplating a thin layer of chromium onto a metal object. The chromed layer can be decorative, provide corrosion resistance, ease cleaning procedures, or increase surface hardness. Sometimes, a less expensive imitator of chrome may be used for aesthetic purposes.

Decorative chrome plating on a motorcycle

Process

Chrome plating a component typically includes these stages:

  • Degreasing to remove heavy soiling
  • Manual cleaning to remove all residual traces of dirt and surface impurities
  • Various pretreatments depending on the substrate
  • Placement into the chrome plating vat, where it is allowed to warm to solution temperature
  • Application of plating current for the required time to attain the desired thickness

There are many variations to this process, depending on the type of substrate being plated. Different substrates need different etching solutions, such as hydrochloric, hydrofluoric, and sulfuric acids. Ferric chloride is also popular for the etching of nimonic alloys. Sometimes the component enters the chrome plating vat while electrically live. Sometimes the component has a conforming anode made from lead/tin or platinized titanium. A typical hard chrome vat plates at about 1 mil (25 μm) per hour.

Various finishing and buffing processes are used in preparing components for decorative chrome plating. The chrome plating chemicals are very toxic. Disposal of chemicals is regulated in most countries.

Some common industry specifications governing the chrome plating process are AMS 2460, AMS 2406, and MIL-STD-1501.

Hexavalent chromium

Hexavalent chromium plating, also known as hex-chrome, Cr6+, and chrome (VI) plating, uses chromium trioxide (also known as chromic anhydride) as the main ingredient. Hexavalent chromium plating solution is used for decorative and hard plating, along with bright dipping of copper alloys, chromic acid anodizing, and chromate conversion coating.[1]

A typical hexavalent chromium plating process is: (1) activation bath, (2) chromium bath, (3) rinse, and (4) rinse. The activation bath is typically a tank of chromic acid with a reverse current run through it. This etches the work-piece surface and removes any scale. In some cases the activation step is done in the chromium bath. The chromium bath is a mixture of chromium trioxide (CrO3) and sulfuric acid (sulfate, SO4), the ratio of which varies greatly between 75:1 to 250:1 by weight. This results in an extremely acidic bath (pH 0). The temperature and current density in the bath affect the brightness and final coverage. For decorative coating the temperature ranges from 35 to 45 °C (100 to 110 °F), but for hard coating it ranges from 50 to 65 °C (120 to 150 °F). Temperature is also dependent on the current density, because a higher current density requires a higher temperature. Finally, the whole bath is agitated to keep the temperature steady and achieve a uniform deposition.[1]

Disadvantages

One functional disadvantage of hexavalent chromium plating is low cathode efficiency, which results in bad throwing power. This means it leaves a non-uniform coating, with more on edges and less in inside corners and holes. To overcome this problem the part may be over-plated and ground to size, or auxiliary anodes may be used around the hard-to-plate areas.[1]

From a health standpoint, hexavalent chromium is the most toxic form of chromium. In the U.S., the Environmental Protection Agency regulates it heavily. The EPA lists hexavalent chromium as a hazardous air pollutant because it is a human carcinogen, a "priority pollutant" under the Clean Water Act, and a "hazardous constituent" under the Resource Conservation and Recovery Act. Due to its low cathodic efficiency and high solution viscosity, a toxic mist of water and hexavalent chromium is released from the bath. Wet scrubbers are used to control these emissions. The discharge from the wet scrubbers is treated to precipitate the chromium from the solution because it cannot remain in the waste water.[1]

Maintaining a bath surface tension less than 35 dynes/cm requires a frequent cycle of treating the bath with a wetting agent and confirming the effect on surface tension.[2] Traditionally, surface tension is measured with a stalagmometer. This method is, however, tedious and suffers from inaccuracy (errors up to 22 dynes/cm have been reported), and is dependent on the user's experience and capabilities.[3]

Additional toxic waste created from hexavalent chromium baths include lead chromates, which form in the bath because lead anodes are used. Barium is also used to control the sulfate concentration, which leads to the formation of barium sulfate (BaSO4).[1]

Trivalent chromium

Trivalent chromium plating, also known as tri-chrome, Cr3+, and chrome (III) plating, uses chromium sulfate or chromium chloride as the main ingredient. Trivalent chromium plating is an alternative to hexavalent chromium in certain applications and thicknesses (e.g. decorative plating).[1]

A trivalent chromium plating process is similar to the hexavalent chromium plating process, except for the bath chemistry and anode composition. There are three main types of trivalent chromium bath configurations:[1]

  • A chloride- or sulfate-based electrolyte bath using graphite or composite anodes, plus additives to prevent the oxidation of trivalent chromium to the anodes.
  • A sulfate-based bath that uses lead anodes surrounded by boxes filled with sulfuric acid (known as shielded anodes), which keeps the trivalent chromium from oxidizing at the anodes.
  • A sulfate-based bath that uses insoluble catalytic anodes, which maintains an electrode potential that prevents oxidation.

The trivalent chromium-plating process can plate the workpieces at a similar temperature, rate and hardness, as compared to hexavalent chromium. Plating thickness ranges from 0.005 to 0.05 mils (0.13 to 1.27 μm).[1]

Advantages and disadvantages

The functional advantages of trivalent chromium are higher cathode efficiency and better throwing power. Better throwing power means better production rates. Less energy is required because of the lower current densities required. The process is more robust than hexavalent chromium because it can withstand current interruptions.[1]

From a health standpoint, trivalent chromium is intrinsically less toxic than hexavalent chromium. Because of the lower toxicity it is not regulated as strictly, which reduces overhead costs. Other health advantages include higher cathode efficiencies, which lead to less chromium air emissions; lower concentration levels, resulting in less chromium waste and anodes that do not decompose.[1]

One of the disadvantages when the process was first introduced was that decorative customers disapproved of the color differences. Companies now use additives to adjust the color. In hard coating applications, the corrosion resistance of thicker coatings is not quite as good as it is with hexavalent chromium. The cost of the chemicals is greater, but this is usually offset by greater production rates and lower overhead costs. In general, the process must be controlled more closely than in hexavalent chromium plating, especially with respect to metallic impurities. This means processes that are hard to control, such as barrel plating, are much more difficult using a trivalent chromium bath.[1]

Types

Decorative

Art Deco portfolio with chrome-plated cover, ca 1925

Decorative chrome is designed to be aesthetically pleasing and durable. Thicknesses range from 0.002 to 0.02 mils (0.05 to 0.5 μm), however they are usually between 0.005 and 0.01 mils (0.13 and 0.25 μm). The chromium plating is usually applied over bright nickel plating. Typical base materials include steel, aluminium, plastic, copper alloys, and zinc alloys.[1] Decorative chrome plating is also very corrosion resistant and is often used on car parts, tools and kitchen utensils.

Hard

Hard chrome plating

Hard chrome, also known as industrial chrome or engineered chrome, is used to reduce friction, improve durability through abrasion tolerance and wear resistance in general, minimize galling or seizing of parts, expand chemical inertness to include a broader set of conditions (especially oxidation resistance, arguably its most famous quality), and bulking material for worn parts to restore their original dimensions.[4] It is very hard, measuring between 65 and 69 HRC (also based on the base metal's hardness). Hard chrome tends to be thicker than decorative chrome, with standard thicknesses in nonsalvage applications ranging from 0.02 to 0.04 mm (20 to 40 μm),[5] but it can be an order of magnitude thicker for extreme wear resistance requirements, in such cases 0.1 mm (100 μm) or thicker provides optimal results. Unfortunately, such thicknesses emphasize the limitations of the process, which are overcome by plating extra thickness then grinding down and lapping to meet requirements or to improve the overall aesthetics of the "chromed" piece.[1] Increasing plating thickness amplifies surface defects and roughness in proportional severity, because hard chrome does not have a leveling effect.[6] Pieces that are not ideally shaped in reference to electric field geometries (nearly every piece sent in for plating, except spheres and egg shaped objects) require even thicker plating to compensate for non-uniform deposition, and much of it is wasted when grinding the piece back to desired dimensions.

Modern "engineered coatings" do not suffer such drawbacks, which often price hard chrome out due to labor costs alone. Hard chrome replacement technologies outperform hard chrome in wear resistance, corrosion resistance, and cost. Rockwell hardness 80 is not extraordinary for such materials. Using spray deposition, uniform thickness that often requires no further polishing or machining is a standard feature of modern engineered coatings. These coatings are often composites of polymers, metals, and ceramic powders or fibers as proprietary embodiments protected by patents or as trade secrets, and thus are usually known by brand names.[7]

Hard chromium plating is subject to different types of quality requirements depending on the application; for instance, the plating on hydraulic piston rods are tested for corrosion resistance with a salt spray test.

Automotive use

Most bright decorative items affixed to cars are referred to as "chrome", meaning steel that has undergone several plating processes to endure the temperature changes and weather that a car is subject to outdoors (although the term then passed on to cover any similar-looking shiny decorative auto parts, including silver plastic trim pieces in casual terminology). Triple plating is the most expensive and durable process, which involves plating the steel first with copper and then nickel before the chromium plating is applied.

Prior to the application of chrome in the 1920s, nickel electroplating was used. In the short production run prior to the US entry into the Second World War, the government banned plating to save chromium and automobile manufacturers painted the decorative pieces in a complementary color. In the last years of the Korean War, the US contemplated banning chrome in favor of several cheaper processes (such as plating with zinc and then coating with shiny plastic).

In 2007, a Restriction of Hazardous Substances Directive (RoHS) was issued banning several toxic substances for use in the automotive industry in Europe, including hexavalent chromium, which is used in chrome plating. However, chrome plating is metal and contains no hexavalent chromium after it is rinsed, so chrome plating is not banned.

gollark: Hi. You want <#733816666089062511> for bots.
gollark: I think it's bruteforcing invite links. Not that it'll work.
gollark: I think we have at least 20 music bots, so feel free to enjoy™ music™?
gollark: For your safety.
gollark: They're in <#733816666089062511>.

See also

References

  1. Pollution Prevention Technology Profile Trivalent Chromium Replacements for Hexavalent Chromium Plating (PDF), Northeast Waste Management Officials’ Association, 2003-10-18, archived from the original (PDF) on 2011-07-20.
  2. "Archived copy". Archived from the original on 2010-11-30. Retrieved 2010-08-20.CS1 maint: archived copy as title (link)
  3. "Surface Technology Environmental Resource Center - STERC". Archived from the original on 2010-07-07. Retrieved 2010-08-20.
  4. "QQ-C-320B" (PDF). everyspec.com. Archived (PDF) from the original on 16 August 2017. Retrieved 3 May 2018.
  5. "Design Recommendations For Hard Chrome Plating". U.S. CHrome Corporation. Archived from the original on 2017-08-16. Retrieved 16 August 2017.
  6. Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 793, ISBN 0-471-65653-4.
  7. Vernhes, Luc (2013). "Alternatives for hard chromium plating: Nanostructured coatings for severe-service valves". Materials Chemistry and Physics. 140 (2–3): 522–528. doi:10.1016/j.matchemphys.2013.03.065.

Further reading

  • SAE AMS 2406
  • SAE AMS 2438
  • SAE AMS 2460 - Plating, Chromium
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.