Central Air Data Computer
The F-14's Central Air Data Computer (CADC) computes altitude, vertical speed, air speed, and mach number from sensor inputs such as pitot and static pressure and temperature.[1] Earlier air data computer systems were electromechanical computers, such as in the F-111.[2] From 1968 to 1970, the first CADC to use custom digital integrated circuits was developed for the F-14.[3]
In the 1980s, the Standard Central Air Data Computer (SCADC) was developed to retrofit U.S. Air Force and U.S. Navy aircraft.[4][5]
F-14 CADC
The CADC was a multi-chip integrated flight control system developed by Garrett AiResearch and used in early versions of the US Navy's F-14 Tomcat fighter. It is notable for early use of MOS custom integrated circuits and has been claimed as the first microprocessor.[3]
The CADC was designed and built by a team led by Steve Geller and Ray Holt, and supported by the startup American Microsystems. Design work started in 1968 and was completed in June 1970, beating out a number of electromechanical systems that had also been designed for the F-14. It was classified by the Navy[6] until 1998. Ray Holt's story of this design and development is presented in his autobiography The Accidental Engineer.[3]
The CADC consisted of an A-to-D converter, several quartz pressure sensors, and a number of MOS-based microchips. Inputs to the system included the primary flight controls, a number of switches, static and dynamic air pressure (for calculating stall points and aircraft speed) and a temperature gauge. The outputs controlled the primary flight controls, wing sweep, the F-14's leading edge "glove", and the flaps.
The MP944 ran at 375 KHz. It contained six chips used to build the CADC's microprocessor, all based on a 20-bit fixed-point-fraction two's complement number system. They were the parallel multiplier unit (PMU) in a 28-pin DIP, the parallel divider unit (PDU) (28-pin DIP), the random-access storage (RAS) (14-pin DIP), the read-only memory (ROM) (14-pin DIP), the special logic function (SLF) (28-pin DIP), and the steering logic unit (SLU) (28-pin DIP). The complete microprocessor system of 28 circuits consists of 1 PMU, 1 PDU, 1 SLF, 3 RASs, 3 SLUs, and 19 ROMs.
In 1971, Holt wrote an article about the system for Computer Design magazine,[7] but the Navy classified it, and finally released it in 1998. For this reason, the CADC and MP944 remain fairly obscure in spite of their historical importance.
References
- Dictionary of Military and Associated Terms. DIANE Publishing. Oct 1, 1987. p. 63. ISBN 9780941375108.
- F-111 Aardvark Pilot's Flight Operating Manual. United States Air Force. August 2007. p. 1–57. ISBN 9781430312123.
- Raymond Holt and Leo Sorge (2017). The Accidental Engineer. Lulu.com. p. 36. ISBN 9781387313488. Retrieved 2 June 2020.CS1 maint: uses authors parameter (link)
- "New Avionics Standardization Initiative - Standard Central Air Data Computer (SCADC)". Feedback. Wright-Patterson Air Force Base. II (1): 3.
- Standard Central Air Data Computer (PDF). GEC Avionics. 1985.
- Sudhir Dixit and Ramjee Prasad (2017). Human Bond Communication: The Holy Grail of Holistic Communication and Immersive Experience. 9781119341338. p. 211. Retrieved 2 June 2020.CS1 maint: uses authors parameter (link)
- 1971 paper on the CADC (which was classified and never published)