Cap product

In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that qp, to form a composite chain of degree pq. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938.

Definition

Let X be a topological space and R a coefficient ring. The cap product is a bilinear map on singular homology and cohomology

defined by contracting a singular chain with a singular cochain by the formula :

Here, the notation indicates the restriction of the simplicial map to its face spanned by the vectors of the base, see Simplex.

Interpretation

In analogy with the interpretation of the cup product in terms of the Künneth formula, we can explain the existence of the cap product in the following way. Using CW approximation we may assume that is a CW-complex and (and ) is the complex of its cellular chains (or cochains, respectively). Consider then the composition

where we are taking tensor products of chain complexes, is the diagonal map which induces the map on the chain complex, and is the evaluation map (always 0 except for ).

This composition then passes to the quotient to define the cap product , and looking carefully at the above composition shows that it indeed takes the form of maps , which is always zero for .

The slant product

If in the above discussion one replaces by , the construction can be (partially) replicated starting from the mappings

and

to get, respectively, slant products :

and

In case X = Y, the first one is related to the cap product by the diagonal map: .

These ‘products’ are in some ways more like division than multiplication, which is reflected in their notation.

Equations

The boundary of a cap product is given by :

Given a map f the induced maps satisfy :

The cap and cup product are related by :

where

, and

An interesting consequence of the last equation is that it makes into a right module.

gollark: Eh. I think it's better than the alternative.
gollark: When people decide to violate that by identifying you in the real world, that is problematic.
gollark: One of the good things about the internet is the ability to have pseudonyms and not be connected to your real-world identity, which allows (some amount of) safety and helps allow freedom of thought.
gollark: And this is probably some weird semantic argument and/or ethical thing more than something you can "logically prove" either way.
gollark: Looking up and compiling information on people for the purpose of identifying them without their consent is *stalkery behavior*, if not doxxing or some sort of criminal thing, even if that information is theoretically public and they *allegedly* haven't released/misused it.

See also

References

  • Hatcher, A., Algebraic Topology, Cambridge University Press (2002) ISBN 0-521-79540-0. Detailed discussion of homology theories for simplicial complexes and manifolds, singular homology, etc.
  • slant product in nLab
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.