Busbar

In electric power distribution, a busbar (also bus bar) is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are also used to connect high voltage equipment at electrical switchyards, and low voltage equipment in battery banks. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars. These features allow sufficient cooling of the conductors, and the ability to tap in at various points without creating a new joint.

Copper busbar in an LT Panel
1500 ampere copper busbars within a power distribution rack for a large building

The term busbar is derived from the Latin word omnibus, which translates into English as "for all", indicating that a busbar carries all of the currents in a particular system.

Design and placement

The material composition and cross-sectional size of the busbar determine the maximum amount of current that can be safely carried. Busbars can have a cross-sectional area of as little as 10 square millimetres (0.016 sq in), but electrical substations may use metal tubes 50 millimetres (2.0 in) in diameter (2,000 square millimetres (3.1 sq in)) or more as busbars. An aluminium smelter will have very large busbars used to carry tens of thousands of amperes to the electrochemical cells that produce aluminium from molten salts.

Busbars are produced in a variety of shapes, such as flat strips, solid bars, or rods, and are typically composed of copper, brass, or aluminium as solid or hollow tubes.[1] Some of these shapes allow heat to dissipate more efficiently due to their high surface area to cross-sectional area ratio. The skin effect makes 50–60 Hz AC busbars more than about 8 millimetres (0.31 in) thickness inefficient, so hollow or flat shapes are prevalent in higher current applications. A hollow section also has higher stiffness than a solid rod of equivalent current-carrying capacity, which allows a greater span between busbar supports in outdoor electrical switchyards.

A busbar must be sufficiently rigid to support its own weight, and forces imposed by mechanical vibration and possibly earthquakes, as well as accumulated precipitation in outdoor exposures. In addition, thermal expansion from temperature changes induced by ohmic heating and ambient temperature variations, as well as magnetic forces induced by large currents, must be considered. In order to address these concerns, flexible bus bars, typically a sandwich of thin conductor layers, were developed. These require a structural frame or cabinet for their installation.

Distribution boards split the electrical supply into separate circuits at one location. Busways, or bus ducts, are long busbars with a protective cover. Rather than branching from the main supply at one location, they allow new circuits to branch off anywhere along the route of the busway.

A busbar may either be supported on insulators, or else insulation may completely surround it. Busbars are protected from accidental contact either by a metal earthed enclosure or by elevation out of normal reach.[2] Power neutral busbars may also be insulated because it is not guaranteed that the potential between power neutral and safety grounding is always zero. Earthing (safety grounding) busbars are typically bare and bolted directly onto any metal chassis of their enclosure. Busbars may be enclosed in a metal housing, in the form of bus duct or busway, segregated-phase bus, or isolated-phase bus.

Busbars may be connected to each other and to electrical apparatus by bolted, clamped, or welded connections. Often, joints between high-current bus sections have precisely-machined matching surfaces that are silver-plated to reduce the contact resistance. At extra high voltages (more than 300 kV) in outdoor buses, corona discharge around the connections becomes a source of radio-frequency interference and power loss, so special connection fittings designed for these voltages are used.

gollark: It's called 5G because it's fifth generation because it comes after 4G.
gollark: No.
gollark: I don't like it. We use a BT router with that "feature" at home and I cannot figure out how to turn it off and it *annoys me slightly*.
gollark: Self-driving cars should probably not be using the mobile/cell network just for communicating with nearby cars, since it adds extra latency and complexity over some direct P2P thing, and they can't really do things which rely on constant high-bandwidth networking to the internet generally, since they need to be able to not crash if they go into a tunnel or network dead zone or something.
gollark: My problem isn't *that* (5G apparently has improvements for more normal frequencies anyway), but that higher bandwidth and lower latency just... isn't that useful and worth the large amount of money for most phone users.

See also

References

Bibliography

  • Walter A. Elmore (1994). Protective Relaying Theory and Applications. Marcel Dekker Inc. ISBN 978-0-8247-9152-0.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.