Brain mapping
Brain mapping is a set of neuroscience techniques predicated on the mapping of (biological) quantities or properties onto spatial representations of the (human or non-human) brain resulting in maps.
Brain mapping | |
---|---|
MeSH | D001931 |
According to the definition established in 2013 by Society for Brain Mapping and Therapeutics (SBMT), brain mapping is specifically defined, in summary, as the study of the anatomy and function of the brain and spinal cord through the use of imaging, immunohistochemistry, molecular & optogenetics, stem cell and cellular biology, engineering, neurophysiology and nanotechnology.
Overview
All neuroimaging is considered part of brain mapping. Brain mapping can be conceived as a higher form of neuroimaging, producing brain images supplemented by the result of additional (imaging or non-imaging) data processing or analysis, such as maps projecting (measures of) behavior onto brain regions (see fMRI). One such map, called a connectogram, depicts cortical regions around a circle, organized by lobes. Concentric circles within the ring represent various common neurological measurements, such as cortical thickness or curvature. In the center of the circles, lines representing white matter fibers illustrate the connections between cortical regions, weighted by fractional anisotropy and strength of connection.[1] At higher resolutions brain maps are called connectomes. These maps incorporate individual neural connections in the brain and are often presented as wiring diagrams.[2]
Brain mapping techniques are constantly evolving, and rely on the development and refinement of image acquisition, representation, analysis, visualization and interpretation techniques.[3] Functional and structural neuroimaging are at the core of the mapping aspect of brain mapping.
Some scientists have criticized the brain image-based claims made in scientific journals and the popular press, like the discovery of "the part of the brain responsible" things like love or musical abilities or a specific memory. Many mapping techniques have a relatively low resolution, including hundreds of thousands of neurons in a single voxel. Many functions also involve multiple parts of the brain, meaning that this type of claim is probably both unverifiable with the equipment used, and generally based on an incorrect assumption about how brain functions are divided. It may be that most brain functions will only be described correctly after being measured with much more fine-grained measurements that look not at large regions but instead at a very large number of tiny individual brain circuits. Many of these studies also have technical problems like small sample size or poor equipment calibration which means they cannot be reproduced - considerations which are sometimes ignored to produce a sensational journal article or news headline. In some cases the brain mapping techniques are used for commercial purposes, lie detection, or medical diagnosis in ways which have not been scientifically validated.[4]
History
In the late 1980s in the United States, the Institute of Medicine of the National Academy of Science was commissioned to establish a panel to investigate the value of integrating neuroscientific information across a variety of techniques.[5]
Of specific interest is using structural and functional magnetic resonance imaging (fMRI), diffusion MRI (dMRI), magnetoencephalography (MEG), electroencephalography (EEG), positron emission tomography (PET), Near-infrared spectroscopy (NIRS) and other non-invasive scanning techniques to map anatomy, physiology, perfusion, function and phenotypes of the human brain. Both healthy and diseased brains may be mapped to study memory, learning, aging, and drug effects in various populations such as people with schizophrenia, autism, and clinical depression. This led to the establishment of the Human Brain Project.[6] It may also be crucial to understanding traumatic brain injuries (as in the case of Phineas Gage)[7] and improving brain injury treatment.[8]
Following a series of meetings, the International Consortium for Brain Mapping (ICBM) evolved.[9] The ultimate goal is to develop flexible computational brain atlases.
On May 5, 2010 the Supreme Court in India (Smt. Selvi vs. State of Karnataka) declared brain mapping, lie detector tests and narcoanalysis to be unconstitutional, violating Article 20 (3) of Fundamental Rights. These techniques cannot be conducted forcefully on any individual and requires consent for the same. When they are conducted with consent, the material so obtained is regarded as evidence during trial of cases according to Section 27 of the Evidence Act.[10]
Current Atlas tools
- Talairach Atlas, 1988
- Harvard Whole Brain Atlas, 1995[11]
- MNI Template, 1998 (The standard template of SPM and International Consortium for Brain Mapping)
- Atlas of the Developing Human Brain, 2012[12]
Full SBMT definition
Brain mapping is the study of the anatomy and function of the brain and spinal cord through the use of imaging (including intra-operative, microscopic, endoscopic and multi-modality imaging), immunohistochemistry, molecular & optogenetics, stem cell and cellular biology, engineering (material, electrical and biomedical), neurophysiology and nanotechnology.
See also
- Outline of brain mapping
- Outline of the human brain
- Brain Mapping Foundation
- BrainMaps Project
- Center for Computational Biology
- Connectogram
- FreeSurfer
- Human Connectome Project
- IEEE P1906.1
- List of neuroscience databases
- Map projection
- Neuroimaging software
- Whole brain emulation
- Topographic map (neuroanatomy)
- Society for Brain Mapping and Therapeutics
- Computational anatomy
References
- Irimia, Andrei; Chambers, Micah C.; Torgerson, Carinna M.; Horn, John D. (2012). "Circular representation of human cortical networks for subject and population-level connectomic visualization". NeuroImage. 60 (2): 1340–51. doi:10.1016/j.neuroimage.2012.01.107. PMC 3594415. PMID 22305988.
- Shi, Y (May 2017). "Connectome imaging for mapping human brain pathways". Nature. 22: 1230–1240. doi:10.1038/mp.2017.92.
- Kambara, T; Sood, S; Alqatan, Z; Klingert, C; Ratnam, D; Hayakawa, A; Nakai, Y; Luat, AF; Agarwal, R; Rothermel, R; Asano, E (2018). "Presurgical language mapping using event-related high-gamma activity: The Detroit procedure". Clin Neurophysiol. 129 (1): 145–154. doi:10.1016/j.clinph.2017.10.018. PMC 5744878. PMID 29190521.
- Satel, Sally L.; Lilienfeld, Scott O. (2015). Brainwashed: The Seductive Appeal of Mindless Neuroscience. New York: Basic Books (Perseus Book Group). ISBN 978-0465062911.
- Pechura, Constance M.; Martin, Joseph B. (1991). Mapping the Brain and Its Functions: Integrating Enabling Technologies Into Neuroscience Research. Institute of Medicine (U.S.). Committee on a National Neural Circuitry Database. doi:10.17226/1816.
- Koslow, Stephen H.; Huerta, Michael F., eds. (1997). Neuroinformatics: An Overview of the Human Brain Project. Mahwah, New Jersey: L. Eribaum. ISBN 9781134798421.
- Van Horn, John Darrell; Irimia, Andrei; Torgerson, Carinna M.; Chambers, Micah C.; Kikinis, Ron; Toga, Arthur W. (2012). Sporns, Olaf (ed.). "Mapping Connectivity Damage in the Case of Phineas Gage". PLoS ONE. 7 (5): e37454. doi:10.1371/journal.pone.0037454. PMC 3353935. PMID 22616011.
- Irimia, Andrei; Chambers, Micah C.; Torgerson, Carinna M.; Filippou, Maria; Hovda, David A.; Alger, Jeffry R.; Gerig, Guido; Toga, Arthur W.; Vespa, Paul M.; Kikinis, Ron; Van Horn, John D. (2012). "Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury". Frontiers in Neurology. 3: 10. doi:10.3389/fneur.2012.00010. PMC 3275792. PMID 22363313.
- Toga, Arthur W.; Mazziotta, John C., eds. (2002). Brain Mapping: The Methods. Volume 1. Academic Press (Elsevier Science). ISBN 978-0-12-693019-1.
- Math, SB (2011). "Supreme Court judgment on polygraph, narco-analysis & brain-mapping: a boon or a bane". Indian J. Med. Res. 134: 4–7. PMC 3171915. PMID 21808125.
- Harvard Whole Brain Atlas Archived 2016-01-18 at the Wayback Machine
- Serag, Ahmed; Aljabar, Paul; Ball, Gareth; Counsell, Serena J.; Boardman, James P.; Rutherford, Mary A.; Edwards, A. David; Hajnal, Joseph V.; Rueckert, Daniel (2012). "Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression". NeuroImage. 59 (3): 2255–65. doi:10.1016/j.neuroimage.2011.09.062. PMID 21985910.
Further reading
- Rita Carter (1998). Mapping the Mind.
- F.J. Chen (2006). Brain Mapping And Language
- F.J. Chen (2006). Focus on Brain Mapping Research.
- F.J. Chen (2006). Trends in Brain Mapping Research.
- F.J. Chen (2006). Progress in Brain Mapping Research.
- Koichi Hirata (2002). Recent Advances in Human Brain Mapping: Proceedings of the 12th World Congress of the International Society for Brain Electromagnetic Topography (ISBET 2001).
- Konrad Maurer and Thomas Dierks (1991). Atlas of Brain Mapping: Topographic Mapping of Eeg and Evoked Potentials.
- Konrad Maurer (1989). Topographic Brain Mapping of Eeg and Evoked Potentials.
- Arthur W. Toga and John C. Mazziotta (2002). Brain Mapping: The Methods.
- Tatsuhiko Yuasa, James Prichard and S. Ogawa (1998). Current Progress in Functional Brain Mapping: Science and Applications.
External links
- Epilepsy & Brain Mapping Program
- BrainMapping.org project
- National Centers for Biomedical Computing
- Mapology.org
- Human Brain Mapping
- National Center for Multi-Scale Study of Cellular Networks
- National Center for Biomedical Ontology
- Physics-based Simulation of Biological Structures
- National Alliance for Medical Imaging Computing
- Informatics for Integrating Biology and the Bedside
- National Center for Integrative Biomedical Informatics
- Elekta Neuromag
- Brain Mapping Foundation
- Interactive Brain Map by InformED
- Society for Brain Mapping and Therapeutics
- The ultimate brain map on YouTube July 20, 2016 on Nature video channel
- MRICloud.org