Bioinspiration

Bioinspiration is the development of novel materials, devices, and structures inspired by solutions found in biological systems and biological evolution and refinement which has occurred over millions of years.[1] The goal is to improve modeling and simulation of the biological system to attain a better understanding of the nature's critical structural features, such as a wing, for use in future bioinspired designs.[2] Bioinspiration differs from biomimicry in that the latter aims to precisely replicate the designs of biological materials. Bioinspired research is a return to the classical origins of science: it is a field based on observing the remarkable functions that characterize living organisms, and trying to abstract and imitate those functions.

History

Ideas in science and technology often arise from studying nature. In the 16th and 17th century, G. Galilei, J. Kepler and I. Newton studied the motion of the sun and the planets and developed the first empirical equation to describe gravity. A few years later, M. Faraday and J. C. Maxwell derived the fundamentals of electromagnetism by examining interactions between electrical currents and magnets. The studies of heat transfer and mechanical work lead to the understanding of thermodynamics. However, quantum mechanics originated from the spectroscopic study of light. Current objects of attention are originated in chemistry but the most abundant of them are found in biology, e.g. the study of genetics, characteristics of cells and the development of higher animals and disease.[3]

The current field of research

Bio-inspiration is a solidly established strategy in the field of chemistry, but it is not a mainstream approach. Especially, this research is still developing its scientific and technological systems, on academic and industrial levels.

This field dates back from the 1980s but in the 2010s, many natural phenomena have not been studied.,[3][4]

Typical characteristics of bioinspiration

Function

Bio-inspired research is quite different from chemistry research. This research does not focus on complexity and microscopic things like molecular structure. It is based on observing and understanding the functions from the products of biological evolution.

A limitless source of ideas

There are various kinds of organisms and many different strategies that have proved successful in biology at solving some functional problem. Some kinds of high-level bio functions may seem simple, but they are supported by many layers of underlying structures, processes, molecules and their elaborate interaction. There is no chance to run out of phenomena for bio-inspired research.

Simplicity

Often, bio-inspired research about something can be much easier than precisely replicating the source of inspiration. For example, researchers do not have to know how a bird flies to make an airplane.

Transcultural field

Bio-inspiration returns to observation of nature as a source of inspiration for problem-solving and make it part of a grand tradition. The simplicity of many solutions emerge from a bio-inspired strategy, combined with the fact that different geographical and cultural regions have different types of contact with animals, fish, plants, birds and even microorganisms. This means different regions will have intrinsic advantages in areas in which their natural landscape is rich. So bio-inspired research is trans-cultural field.

Technical applications

There are many technical applications available nowadays that are bioinspired. However, this term should not be mixed up with biomimicry. For example, an airplane in general is bioinspired by birds. The wing tips of an airplane are biomimetic because its original function of minimizing turbulence and therefore needing less energy to fly, is not changed or improved compared to nature's original. Also, Nano 3D printing method is also one of the novel method for bioinspiration. Plants and animals have particular properties which are often related to their composition of nano- and micro surface structures. Many research have already been tried to mimic Salvinia molesta leaves for superhydrophobicity, gecko's toes which increase the amount of attractive Van der Waals force that lead to adhesiveness even on slippery surfaces, and moth antennae which inspire a new approach to detect chemical leaks, drugs and explosives.[5]

gollark: I think someone else has a copy.
gollark: Well, I'm not.
gollark: Have you tried the audio edition?
gollark: Great reviews from our ~~victims~~ users!
gollark: People have described potatOS as "a horrible screech" and "owwwww".

References

  1. Sanchez, Clément; Arribart, Hervé; Guille, Marie Madeleine Giraud (2005). "Biomimetism and bioinspiration as tools for the design of innovative materials and systems". Nature Materials. 4 (4): 277–288. Bibcode:2005NatMa...4..277S. doi:10.1038/nmat1339. PMID 15875305.
  2. "Definition of BIOINSPIRED". Aerospace America. Retrieved 26 September 2018.
  3. Whitesides, G. M. (15 May 2015). "Bioinspiration: something for everyone". Interface Focus. 5 (4): 20150031. doi:10.1098/rsfs.2015.0031. PMC 4590425. PMID 26464790.
  4. Krishnan, Rajeshwar. "Biomimetic or Bioinspired?" (PDF). The Electrochemical Society (ECS).
  5. Anthony, Lowder (25 October 2017). "Nanoscribe's Nano 3D Printer Used to Study Animal Shapes and Bioinspired Materials - 3D Printing Media Network". 3D Printing Media Network.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.