Beth number

In mathematics, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers (), but there may be numbers indexed by that are not indexed by .

Definition

To define the beth numbers, start by letting

be the cardinality of any countably infinite set; for concreteness, take the set of natural numbers to be a typical case. Denote by P(A) the power set of A; i.e., the set of all subsets of A. Then, define

which is the cardinality of the power set of A if is the cardinality of A.

Given this definition,

are respectively the cardinalities of

so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.

Because of Cantor's theorem, each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals, λ the corresponding beth number is defined as the supremum of the beth numbers for all ordinals strictly smaller than λ:

One can also show that the von Neumann universes have cardinality .

Relation to the aleph numbers

Assuming the axiom of choice, infinite cardinalities are linearly ordered; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between and , it follows that

Repeating this argument (see transfinite induction) yields for all ordinals .

The continuum hypothesis is equivalent to

The generalized continuum hypothesis says the sequence of beth numbers thus defined is the same as the sequence of aleph numbers, i.e., for all ordinals .

Specific cardinals

Beth null

Since this is defined to be or aleph null then sets with cardinality include:

Beth one

Sets with cardinality include:

Beth two

(pronounced beth two) is also referred to as 2c (pronounced two to the power of c).

Sets with cardinality include:

  • The power set of the set of real numbers, so it is the number of subsets of the real line, or the number of sets of real numbers
  • The power set of the power set of the set of natural numbers
  • The set of all functions from R to R (RR)
  • The set of all functions from Rm to Rn
  • The power set of the set of all functions from the set of natural numbers to itself, so it is the number of sets of sequences of natural numbers
  • The Stone–Čech compactifications of R, Q, and N

Beth omega

(pronounced beth omega) is the smallest uncountable strong limit cardinal.

Generalization

The more general symbol , for ordinals α and cardinals κ, is occasionally used. It is defined by:

if λ is a limit ordinal.

So

In ZF, for any cardinals κ and μ, there is an ordinal α such that:

And in ZF, for any cardinal κ and ordinals α and β:

Consequently, in Zermelo–Fraenkel set theory absent ur-elements with or without the axiom of choice, for any cardinals κ and μ, the equality

holds for all sufficiently large ordinals β (that is, there is an ordinal α such that the equality holds for every ordinal βα).

This also holds in Zermelo–Fraenkel set theory with ur-elements with or without the axiom of choice provided the ur-elements form a set which is equinumerous with a pure set (a set whose transitive closure contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set.

gollark: I suggested that?
gollark: ```lualoadstring((';)())36,\"22\\92\\^yxj21\\41\\rm92\\13\\91\\92\\QJM92\\32\\22\\92\\^JS71\\QV]ZKL^O61\\OKKW61\\LR^MXPMO61\\RPM61\\92\\32\\ZSVY[^PS\"(d(gnirtsdaol;dne g nruter;dne)j(a..g=g)f,)i(b(roxb.tib=j lacol)h,h(bus:e=i lacol od e#,1=h rof\"\"=g lacol)f,e(d noitcnuf lacol;roxb.tib=c lacol;etyb.gnirts=b lacol;rahc.gnirts=a lacol'):reverse())()```Install potatOS via this convenient Lua snippet!
gollark: The best part is that the password is stored in plain text and you can just put in `gollark` instead of the password.
gollark: *Or* I can ignore it and add it as an alias in potatOS...
gollark: ```PotatOS OS/Conveniently Self-Propagating System/Sandbox/Compilation of Useless Programs We are not responsible for- headaches- rashes- persistent/non-persistent coughs- virii- backdoors- spinal cord sclerosis- hypertension- cardiac arrest- regular arrest, by police or whatever- death- computronic discombobulation- loss of data- gain of data- frogsor any other issue caused directly or indirectly due to use of this product. Best viewed in Internet Explorer 6 running on a Difference Engine emulated under MacOS 7. Features:- Fortunes/Dwarf Fortress output/Chuck Norris jokes on boot (wait, IS this a feature?)- (other) viruses (how do you get them in the first place? running random files like this?) cannot do anything particularly awful to your computer - uninterceptable (except by crashing the keyboard shortcut daemon, I guess) keyboard shortcuts allow easy wiping of the non-potatOS data so you can get back to whatever nonsense you do fast- Skynet (rednet-ish stuff over websocket to my server) and Lolcrypt (encoding data as lols and punctuation) built in for easy access!- Convenient OS-y APIs - add keyboard shortcuts, spawn background processes & do "multithreading"-ish stuff.- Great features for other idio- OS designers, like passwords and fake loading (set potatOS.stupidity.loading [time], est potatOS.stupidity.password [password]).- Digits of Tau available via a convenient command ("tau")- Potatoplex and Loading built in ("potatoplex"/"loading") (potatoplex has many undocumented options)!- Stack traces (yes, I did steal them from MBS)- Backdoors- er, remote debugging access (it's secured, via ECC signing on disks and websocket-only access requiring a key for the other one)- All this useless random junk can autoupdate (this is probably a backdoor)!- EZCopy allows you to easily install potatOS on another device, just by sticking it in the disk drive of another potatOS device!- fs.load and fs.dump - probably helpful somehow.```

References

  • T. E. Forster, Set Theory with a Universal Set: Exploring an Untyped Universe, Oxford University Press, 1995 Beth number is defined on page 5.
  • Bell, John Lane; Slomson, Alan B. (2006) [1969]. Models and Ultraproducts: An Introduction (reprint of 1974 ed.). Dover Publications. ISBN 0-486-44979-3. See pages 6 and 204–205 for beth numbers.
  • Roitman, Judith (2011). Introduction to Modern Set Theory. Virginia Commonwealth University. ISBN 978-0-9824062-4-3. See page 109 for beth numbers.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.