Antiisomorphism

In category theory, a branch of mathematics, an antiisomorphism (or anti-isomorphism) between structured sets A and B is an isomorphism from A to the opposite of B (or equivalently from the opposite of A to B).[1] If there exists an antiisomorphism between two structures, they are said to be antiisomorphic.

Intuitively, to say that two mathematical structures are antiisomorphic is to say that they are basically opposites of one another.

The concept is particularly useful in an algebraic setting, as, for instance, when applied to rings.

Simple example

Let A be the binary relation (or directed graph) consisting of elements {1,2,3} and binary relation defined as follows:

Let B be the binary relation set consisting of elements {a,b,c} and binary relation defined as follows:

Note that the opposite of B (denoted Bop) is the same set of elements with the opposite binary relation (that is, reverse all the arcs of the directed graph):

If we replace a, b, and c with 1, 2, and 3 respectively, we see that each rule in Bop is the same as some rule in A. That is, we can define an isomorphism from A to Bop by . is then an antiisomorphism between A and B.

Ring anti-isomorphisms

Specializing the general language of category theory to the algebraic topic of rings, we have: Let R and S be rings and f: RS be a bijection. Then f is a ring anti-isomorphism[2] if

If R = S then f is a ring anti-automorphism.

An example of a ring anti-automorphism is given by the conjugate mapping of quaternions:[3]

Notes

  1. Pareigis, p. 19
  2. Jacobson, p. 16
  3. Baer, p. 96
gollark: Basically, when there's a new revision, the apiosystem reads the current content out of `pages`, compresses it, generates and serializes the metadata, then shoves in a row into `revisions`.
gollark: As of now I do this:```sqlCREATE TABLE pages ( title TEXT NOT NULL UNIQUE, content TEXT NOT NULL, updated INTEGER NOT NULL, created INTEGER NOT NULL);CREATE TABLE revisions ( page TEXT NOT NULL REFERENCES pages(title), timestamp INTEGER NOT NULL, meta BLOB NOT NULL, -- contains revision metadata and type -- ChangeContent { size } is the only one here for now full_data BLOB -- contains optionally compressed text);```but it is not ideal.
gollark: Yes. Please hold on while I post the schæma.
gollark: Yes.
gollark: <@293066066605768714> You expressed vague interest in my wiki project thus I will now direct random technical questions to you: how should I store pages with revision history?

References

  • Baer, Reinhold (2005) [1952], Linear Algebra and Projective Geometry, Dover, ISBN 0-486-44565-8
  • Jacobson, Nathan (1948), The Theory of Rings, American Mathematical Society, ISBN 0-8218-1502-4
  • Pareigis, Bodo (1970), Categories and Functors, Academic Press, ISBN 0-12-545150-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.