ATPIF1

ATPase inhibitor, mitochondrial is an enzyme that in humans is encoded by the ATPIF1 gene.[5][6]

ATP5IF1
Identifiers
AliasesATP5IF1, ATPI, ATPIP, IP, ATPase inhibitory factor 1, ATP synthase inhibitory factor subunit 1, ATPIF1
External IDsOMIM: 614981 MGI: 1196457 HomoloGene: 40581 GeneCards: ATP5IF1
Gene location (Human)
Chr.Chromosome 1 (human)[1]
Band1p35.3Start28,236,109 bp[1]
End28,246,906 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

93974

11983

Ensembl

ENSG00000130770
ENSG00000285390

ENSMUSG00000054428

UniProt

Q9UII2

O35143

RefSeq (mRNA)

NM_178191
NM_016311
NM_178190

NM_007512

RefSeq (protein)

NP_057395
NP_835497
NP_835498

NP_031538

Location (UCSC)Chr 1: 28.24 – 28.25 MbChr 4: 132.53 – 132.53 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

This gene encodes a mitochondrial ATPase inhibitor. Alternative splicing occurs at this locus and three transcript variants encoding distinct isoforms have been identified.[6]

It prevents ATPase from switching to ATP hydrolysis during collapse of the electrochemical gradient, for example during oxygen deprivation [7] ATP synthase inhibitor forms a one-to-one complex with the F1 ATPase, possibly by binding at the alpha-beta interface. It is thought to inhibit ATP synthesis by preventing the release of ATP.[8] The inhibitor has two oligomeric states, dimer (the active state) and tetramer. At low pH, the inhibitor forms a dimer via antiparallel coiled coil interactions between the C-terminal regions of two monomers. At high pH, the inhibitor forms tetramers and higher oligomers by coiled coil interactions involving the N terminus and inhibitory region, thus preventing the inhibitory activity.[7]

Model organisms

Model organisms have been used in the study of ATPIF1 function. A conditional knockout mouse line, called Atpif1tm1a(EUCOMM)Wtsi[15][16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[17][18][19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][20] Twenty three tests were carried out on mutant mice and three significant abnormalities were observed.[13] Homozygous mutant animals displayed hyperactivity and brain dysmorphology, while males also had decreased circulating alkaline phosphatase levels.[13]

Mitochondrial ATPase inhibitor, IATP
c-terminal coiled-coil domain from bovine if1
Identifiers
SymbolIATP
PfamPF04568
InterProIPR007648
SCOPe1hf9 / SUPFAM

References

  1. ENSG00000285390 GRCh38: Ensembl release 89: ENSG00000130770, ENSG00000285390 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000054428 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ichikawa N, Ushida S, Kawabata M, Masazumi Y (Mar 2000). "Nucleotide sequence of cDNA coding the mitochondrial precursor protein of the ATPase inhibitor from humans". Biosci Biotechnol Biochem. 63 (12): 2225–2227. doi:10.1271/bbb.63.2225. PMID 10664857.
  6. "Entrez Gene: ATPIF1 ATPase inhibitory factor 1".
  7. Cabezon E, Butler PJ, Runswick MJ, Carbajo RJ, Walker JE (November 2002). "Homologous and heterologous inhibitory effects of ATPase inhibitor proteins on F-ATPases" (PDF). J. Biol. Chem. 277 (44): 41334–41. doi:10.1074/jbc.M207169200. PMID 12186878.
  8. van Raaij MJ, Orriss GL, Montgomery MG, Runswick MJ, Fearnley IM, Skehel JM, Walker JE (December 1996). "The ATPase inhibitor protein from bovine heart mitochondria: the minimal inhibitory sequence". Biochemistry. 35 (49): 15618–25. doi:10.1021/bi960628f. PMID 8961923.
  9. "Anxiety data for Atpif1". Wellcome Trust Sanger Institute.
  10. "Clinical chemistry data for Atpif1". Wellcome Trust Sanger Institute.
  11. "Salmonella infection data for Atpif1". Wellcome Trust Sanger Institute.
  12. "Citrobacter infection data for Atpif1". Wellcome Trust Sanger Institute.
  13. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  18. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  19. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading


This article incorporates text from the public domain Pfam and InterPro: IPR007648
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.