3000 (number)

3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).

2999 3000 3001
0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]]
Cardinalthree thousand
Ordinal3000th
(three thousandth)
Factorization23 × 3 × 53
Greek numeral,Γ´
Roman numeralMMM
Unicode symbol(s)MMM, mmm
Binary1011101110002
Ternary110100103
Quaternary2323204
Quinary440005
Senary215206
Octal56708
Duodecimal18A012
HexadecimalBB816
Vigesimal7A020
Base 362BC36

Selected numbers in the range 3001–3999

3001 to 3099

3100 to 3199

3200 to 3299

  • 3203 – safe prime
  • 3229super-prime
  • 3240triangular number
  • 3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose factorial is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle.
  • 3249 – 572, palindromic in base 7 (123217), centered octagonal number,[1] member of a Ruth–Aaron pair with 3248 under second definition
  • 3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331)
  • 3256 – centered heptagonal number[3]
  • 3259super-prime, completes the ninth prime quadruplet set
  • 3264 – solution to Steiner's conic problem: number of smooth conics tangent to 5 given conics in general position[15]
  • 3266 – sum of first 41 primes, 523rd sphenic number
  • 3276tetrahedral number[16]
  • 3277 – 5th super-Poulet number,[17] decagonal number[4]
  • 3281octahedral number,[18] centered square number[9]
  • 3286 – nonagonal number[7]
  • 3299 – 85th Sophie Germain prime, super-prime

3300 to 3399

3400 to 3499

3500 to 3599

3600 to 3699

3700 to 3799

3800 to 3899

  • 3803 – 97th Sophie Germain prime, safe prime, the largest prime factor of 123,456,789
  • 3821 – 98th Sophie Germain prime
  • 3828triangular number
  • 3831 – sum of first 44 primes
  • 3844 – 622
  • 3851 – 99th Sophie Germain prime
  • 3863 – 100th Sophie Germain prime
  • 3865 – greater of third pair of Smith brothers
  • 3888 – longest number when expressed in Roman numerals I, V, X, L, C, D, and M (MMMDCCCLXXXVIII)
  • 3889Cuban prime of the form x = y + 2[21]
  • 3894octahedral number[18]

3900 to 3999

  • 3901star number
  • 3906pronic number
  • 3911 – 101st Sophie Germain prime, super-prime
  • 3916triangular number
  • 3925 – centered cube number[5]
  • 3926 – 12th open meandric number, 654th sphenic number
  • 3928 – centered heptagonal number[3]
  • 3937 – product of distinct Mersenne primes,[25] repeated sum of divisors is prime,[26] denominator of conversion factor from meter to US survey foot[27]
  • 3940 – there are 3940 distinct ways to arrange the 12 flat pentacubes (or 3-D pentominoes) into a 3x4x5 box (not counting rotations and reflections)
  • 3943super-prime
  • 3947 – safe prime
  • 3961 – nonagonal number,[7] centered square number[9]
  • 3967Carol number[28]
  • 3969 – 632, centered octagonal number[1]
  • 3989highly cototient number[12]
  • 3998 – member of the Mian–Chowla sequence[13]
  • 3999 – largest number properly expressible using Roman numerals I, V, X, L, C, D, and M (MMMCMXCIX), ignoring vinculum
gollark: You cannot get Minoteaur 5.
gollark: But they have an incentive to be bee, so why would they not be bee when if you bee everyone by being bee then you're rewarded for beeing?
gollark: This is why we should not allow people to submit titles, and autogenerate them from the content.
gollark: Yes.
gollark: Oh, this may be reasonable, I skimmed the comments.

References

  1. "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  2. "Sloane's A051624 : 12-gonal (or dodecagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  3. "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  4. "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  5. "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  6. "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  7. "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  8. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  9. "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  10. "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  11. "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  12. "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  13. "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  14. "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  15. Bashelor, Andrew; Ksir, Amy; Traves, Will (2008), "Enumerative algebraic geometry of conics." (PDF), Amer. Math. Monthly, 115 (8): 701–728, JSTOR 27642583, MR 2456094
  16. "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  17. "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  18. "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  19. "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  20. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  21. "Sloane's A002648 : A variant of the cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  22. "Sloane's A000032 : Lucas numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  23. "Sloane's A082079 : Balanced primes of order four". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  24. "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
  25. Sloane, N. J. A. (ed.). "Sequence A046528". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. Sloane, N. J. A. (ed.). "Sequence A247838". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. Lamb, Evelyn (October 25, 2019), "Farewell to the Fractional Foot", Roots of Unity, Scientific American
  28. "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.