2017 Columbus Challenger – Singles

Stefan Kozlov was the defending champion but chose not to defend his title.

Singles
2017 Columbus Challenger
Champion Ante Pavić
Runner-up Alexander Ward
Final score6–7(11–13), 6–4, 6–3

Ante Pavić won the title after defeating Alexander Ward 6–7(11–13), 6–4, 6–3 in the final.

Seeds

  1. Quentin Halys (Quarterfinals)
  2. Ramkumar Ramanathan (Second round)
  3. Yuki Bhambri (First round, retired)
  4. Denis Kudla (Quarterfinals)
  5. Mackenzie McDonald (First round)
  6. Brayden Schnur (First round)
  7. Dennis Novikov (Semifinals)
  8. Christian Garín (First round)

Draw

Key

Finals

Semifinals Final
          
7 Dennis Novikov 1 3
PR Alexander Ward 6 6
PR Alexander Ward 713 4 3
Alt Ante Pavić 611 6 6
PR Frank Dancevic 3 5
Alt Ante Pavić 6 7

Top half

First Round Second Round Quarterfinals Semifinals
1 Q Halys 3 77 6
B Klein 6 65 1 1 Q Halys 6 6
WC J McNally 6 3 3 PR K King 3 2
PR K King 4 6 6 1 Q Halys 1 6 4
A Krajicek 6 6 7 D Novikov 6 2 6
WC Kyle Seelig 4 2 A Krajicek 4 3
Q M Barton 7 1 3 7 D Novikov 6 6
7 D Novikov 5 6 6 7 D Novikov 1 3
4 D Kudla 6 6 PR A Ward 6 6
D Köpfer 4 4 4 D Kudla 7 6
Q L Bambridge 4 2 WC JJ Wolf 5 3
WC JJ Wolf 6 6 4 D Kudla 6 4 2
P Gunneswaran 64 61 PR A Ward 3 6 6
WC Martin Joyce 77 77 WC M Joyce 6 2 3
PR A Ward 6 6 PR A Ward 4 6 6
5 M McDonald 2 2

Bottom half

First Round Second Round Quarterfinals Semifinals
6 B Schnur 6 3 65
PR F Dancevic 4 6 77 PR F Dancevic 6 6
Q Jared Hiltzik 3 5 DE Galán 0 2
DE Galán 6 7 PR F Dancevic 77 77
P Kobelt 64 66 E King 65 64
E King 77 78 E King 6 77
J Hernández-Fernández 4 77 2 J Hernández-Fernández 4 61
3 Y Bhambri 6 65 0r PR F Dancevic 3 5
8 C Garín 4 3 Alt A Pavić 6 7
Alt A Pavić 6 6 Alt A Pavić 6 6
Q A Vukic 5 5 R Quiroz 1 2
R Quiroz 7 7 Alt A Pavić 69 6 6
M Torpegaard 62 4 F Peliwo 711 3 3
F Peliwo 77 6 F Peliwo 6 6
S Bangoura 67 4 2 R Ramanathan 2 1
2 R Ramanathan 79 6
gollark: https://pack.switchcraft.pw?thisisapointlessquerystring
gollark: Wikipedia?
gollark: https://en.wikipedia.org/wiki/Taxicab_geometry
gollark: They can hardly go diagonally, which would be more efficient in a non-blocky 3D space.
gollark: Don't think so.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.