2016 Heilbronner Neckarcup – Doubles
Mateusz Kowalczyk and Igor Zelenay were the defending champions but chose to participate with different partners. Kowalczyk partnered Tomasz Bednarek while Zelenay partnered Rameez Junaid. Both failed to defend their title, with Kowalczyk losing to Zelenay in the first round and Zelenay losing to Sander Arends and Tristan-Samuel Weissborn in the quarterfinals.
Doubles | |
---|---|
2016 Heilbronner Neckarcup | |
Champion | |
Runner-up | |
Final score | 6–3, 6–4 |
Sander Arends and Tristan-Samuel Weissborn won the title after defeating Nikola Mektić and Antonio Šančić 6–3, 6–4 in the final.
Seeds
Julio Peralta / Horacio Zeballos (Quarterfinals) Andrej Martin / Hans Podlipnik (Quarterfinals) Ken Skupski / Neal Skupski (First round) Rameez Junaid / Igor Zelenay (Quarterfinals)
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
First Round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | 6 | 7 | |||||||||||||||||||||||||
WC | 2 | 5 | 1 | 64 | 6 | [5] | |||||||||||||||||||||
6 | 3 | [10] | 77 | 4 | [10] | ||||||||||||||||||||||
LL | 3 | 6 | [5] | 6 | 6 | ||||||||||||||||||||||
3 | 4 | 3 | 2 | 2 | |||||||||||||||||||||||
6 | 6 | 3 | 2 | ||||||||||||||||||||||||
6 | 3 | [10] | 6 | 6 | |||||||||||||||||||||||
4 | 6 | [6] | 3 | 4 | |||||||||||||||||||||||
64 | 68 | 6 | 6 | ||||||||||||||||||||||||
77 | 710 | 2 | 6 | [11] | |||||||||||||||||||||||
3 | 1 | 4 | 6 | 4 | [9] | ||||||||||||||||||||||
4 | 6 | 6 | 2 | 6 | [10] | ||||||||||||||||||||||
WC | 6 | 3 | [10] | WC | 6 | 3 | [5] | ||||||||||||||||||||
WC | 3 | 6 | [3] | WC | 6 | 6 | |||||||||||||||||||||
6 | 1 | [8] | 2 | 4 | 4 | ||||||||||||||||||||||
2 | 1 | 6 | [10] |
gollark: Yes, I know. It doesn't depend on that.
gollark: You fractionally get 1 million and fractionally die.
gollark: Well, it's good if 1e6/n - (equivalent monetary cost of dying)/n > 0. Multiply both sides by n and it's trivial.
gollark: 1e6 = 1 million.
gollark: The expected value is 1e6/n - (equivalent monetary cost of dying)/n. So whether it is a good choice depends on whether (equivalent monetary cost of dying is greater than 1e6 euros, which is no.
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.