2015 Sparkassen Open – Doubles
Andreas Siljeström and Igor Zelenay were the defending champions, but Siljeström played alongside Frank Moser and lost to Marcel Granollers and Pere Riba in the first round, while Zelenay teamed with Mateusz Kowalczyk and also lost in the first round to Julian Knowle and Philipp Oswald.
Doubles | |
---|---|
2015 Sparkassen Open | |
Champion | |
Runner-up | |
Final score | 3–6, 6–1, [10–5] |
Sergey Betov and Michail Elgin won the title, defeating Damir Džumhur and Franko Škugor in the final, 3–6, 6–1, [10–5].
Seeds
Julian Knowle / Philipp Oswald (Quarterfinals) Santiago González / Adil Shamasdin (Semifinals) Radu Albot / Rameez Junaid (First Round) Guillermo Durán / Horacio Zeballos (Quarterfinals)
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
Draw
First Round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | 6 | 65 | [11] | ||||||||||||||||||||||||
3 | 77 | [9] | 1 | 77 | 3 | [8] | |||||||||||||||||||||
6 | 2 | [11] | 63 | 6 | [10] | ||||||||||||||||||||||
4 | 6 | [9] | 6 | 6 | [10] | ||||||||||||||||||||||
4 | 7 | 6 | 2 | 6 | [8] | ||||||||||||||||||||||
5 | 4 | 4 | 64 | 77 | [8] | ||||||||||||||||||||||
WC | 1 | 67 | 77 | 63 | [10] | ||||||||||||||||||||||
6 | 79 | 6 | 1 | [5] | |||||||||||||||||||||||
WC | 78 | 4 | [5] | 3 | 6 | [10] | |||||||||||||||||||||
WC | 68 | 6 | [10] | WC | 4 | 4 | |||||||||||||||||||||
77 | 78 | 6 | 6 | ||||||||||||||||||||||||
3 | 63 | 66 | 6 | 6 | |||||||||||||||||||||||
2 | 4 | 2 | 2 | 4 | |||||||||||||||||||||||
PR | 6 | 6 | PR | 1 | 3 | ||||||||||||||||||||||
3 | 5 | 2 | 6 | 6 | |||||||||||||||||||||||
2 | 6 | 7 |
gollark: If it's high-power enough someone will notice it.
gollark: That's the electrical engineers' problem.
gollark: Something something radio, I don't care.
gollark: Then you could probably define particles as lists of smaller particles or something, and recurse to atoms and molecules and such.
gollark: I guess you could, if you could transmit enough maths, send along equations and our units.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.