2014 OEC Taipei WTA Challenger – Doubles
The 2014 OEC Taipei WTA Challenger-Doubles was a professional tennis tournament played on indoor carpet courts. It was the seventh edition of OEC's Taipei Open tournaments, and the third under the 125k series classification. It was part of the 2014 WTA 125K series. It took place in Taipei, Taiwan, on 3–9 November 2014.[1] Caroline Garcia and Yaroslava Shvedova were the defending champions, however, Shvedova chose not to participate and Garcia chose to compete in Limoges instead.
Doubles | |
---|---|
2014 OEC Taipei WTA Challenger | |
Champions | |
Runners-up | |
Final score | 6–4, 6–3 |
Chan Hao-ching and Chan Yung-jan won the title, defeating Chang Kai-chen and Chuang Chia-jung in the all-Taiwanese final, 6–4, 6–3.
Seeds
Chan Hao-ching / Chan Yung-jan (champions) Arina Rodionova / Olga Savchuk (semifinals) Chan Chin-wei / Liang Chen (quarterfinals) Hsieh Shu-ying / Xu Yifan (semifinals)
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
First round | Quarterfinals | Semifinals | Final | ||||||||||||||||||||||||
1 | 6 | 3 | [10] | ||||||||||||||||||||||||
1 | 6 | [3] | 1 | 77 | 6 | ||||||||||||||||||||||
65 | 4 | ||||||||||||||||||||||||||
w/o | 1 | 6 | 6 | ||||||||||||||||||||||||
4 | 6 | 6 | 4 | 2 | 1 | ||||||||||||||||||||||
2 | 2 | 4 | 6 | 6 | |||||||||||||||||||||||
6 | 6 | 3 | 2 | ||||||||||||||||||||||||
2 | 3 | 1 | 6 | 6 | |||||||||||||||||||||||
3 | 2 | 4 | 3 | ||||||||||||||||||||||||
6 | 6 | 6 | 6 | ||||||||||||||||||||||||
2 | 3 | 3 | 4 | 3 | |||||||||||||||||||||||
3 | 6 | 6 | 6 | 7 | |||||||||||||||||||||||
7 | 3 | [4] | 2 | 3 | 5 | ||||||||||||||||||||||
5 | 6 | [10] | 4 | 77 | [3] | ||||||||||||||||||||||
4 | 1 | 2 | 6 | 63 | [10] | ||||||||||||||||||||||
2 | 6 | 6 |
gollark: Unfortunately, the best I have been able to manage for meme harvesting is something like 60% accuracy.
gollark: Nikephoros Palaiologos, yes.
gollark: It will categorize them as either "good" or "bad", which is practical as these are clear and objective concepts.
gollark: The actual categorization bit is TODO.
gollark: My really inefficient meme categorization machine learning pipeline (WIP) uses 2GB of total RAM, which is somehow less than Firefox.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.