2,4-Lutidine

2,4-Lutidine is a heterocyclic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivatives of pyridine, all of which are referred to as lutidines. It is a colorless liquid with mildly basic properties and a pungent, noxious odor. The compound has few uses.

2,4-Lutidine
Names
Preferred IUPAC name
2,4-Dimethylpyridine
Other names
2,4-Lutidine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.003.261
EC Number
  • 203-586-8
UNII
Properties
C7H9N
Molar mass 107.156 g·mol−1
Appearance Clear oily liquid
Density 0.9273 g/cm3
Melting point −64 °C (−83 °F; 209 K)
Boiling point 158.5 °C (317.3 °F; 431.6 K)
-71.72·10−6 cm3/mol
Hazards
GHS pictograms
GHS Signal word Warning
GHS hazard statements
H226, H302, H312, H332
P210, P233, P240, P241, P242, P243, P261, P264, P270, P271, P280, P301+312, P302+352, P303+361+353, P304+312, P304+340, P312, P322, P330, P363, P370+378, P403+235, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

It is produced industrially by extraction from coal tars.[1]

Biodegradation

The biodegradation of pyridines proceeds via multiple pathways.[2] Although pyridine is an excellent source of carbon, nitrogen, and energy for certain microorganisms, methylation significantly retards degradation of the pyridine ring.[3][4]

Safety

The LD50 is 200 mg/kg (oral, rats).

gollark: Evidently we need software to automatically replace potentially identifying information you reveal with randomized information instead.
gollark: Is it actually possible to make enough plutonium from the entire solar system's heavy metal stocks to noticeably affect its spectral lines?
gollark: I'm sure we can just patch plants to run off electricity instead.
gollark: Unfortunately, the sun is fairly large, so you'll need more.
gollark: I don't see why you would want sunlight. It's irritatingly bright, and causes skin cancer, and causes you to have to turn your phone's brightness up to see it.

See also

References

  1. Shimizu, Shinkichi; Watanabe, Nanao; Kataoka, Toshiaki; Shoji, Takayuki; Abe, Nobuyuki; Morishita, Sinji; Ichimura, Hisao (2007). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399.
  2. Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker (2007). "Biochemical Interpretation of Quantitative Structure-Activity Relationships (QSAR) for Biodegradation of N-Heterocycles: A Complementary Approach to Predict Biodegradability". Environmental Science & Technology. 41: 1390-1398. doi:10.1021/es061505d.
  3. Sims, G. K.; Sommers, L.E. (1985). "Degradation of pyridine derivatives in soil". Journal of Environmental Quality. 14: 580–584. doi:10.2134/jeq1985.00472425001400040022x.
  4. Sims, G. K.; Sommers, L.E. (1986). "Biodegradation of Pyridine Derivatives in Soil Suspensions". Environmental Toxicology and Chemistry: 503–509. doi:10.1002/etc.5620050601.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.