1999 US Open – Men's Doubles Qualifying
Men's Doubles Qualifying | |
---|---|
1999 US Open |
Seeds
James Greenhalgh / Grant Silcock (Qualifying Competition) Paul Rosner / Dušan Vemić (First Round) Andrew Painter / Byron Talbot (Qualifying Competition) Ota Fukárek / Alejandro Hernández (Qualifying Competition) Maurice Ruah / André Sá (Qualifiers) Ben Ellwood / Michael Tebbutt (Qualifiers) Sander Groen / Gabriel Trifu (First Round) Thomas Shimada / Myles Wakefield (Qualifiers)
Qualifiers
Thomas Shimada / Myles Wakefield Mitch Sprengelmayer / Jason Weir-Smith Ben Ellwood / Michael Tebbutt Maurice Ruah / André Sá
Draw
Key
- Q = Qualifier
- WC = Wild Card
- LL = Lucky Loser
- Alt = Alternate
- SE = Special Exempt
- PR = Protected Ranking
- ITF = ITF entry
- JE = Junior Exempt
- w/o = Walkover
- r = Retired
- d = Defaulted
First Qualifier
First Round | Qualifying Competition | ||||||||||||
1 | 6 | 6 | |||||||||||
3 | 2 | ||||||||||||
1 | 6 | 6 | |||||||||||
8 | 7 | 7 | |||||||||||
3 | 3 | ||||||||||||
8 | 6 | 6 | |||||||||||
Second Qualifier
First Round | Qualifying Competition | ||||||||||||
2 | 7 | 3 | 6 | ||||||||||
6 | 6 | 7 | |||||||||||
6 | 7 | ||||||||||||
2 | 6 | ||||||||||||
6 | 6 | ||||||||||||
7 | 3 | 4 | |||||||||||
Third Qualifier
First Round | Qualifying Competition | ||||||||||||
3 | 6 | 6 | 6 | ||||||||||
WC | 7 | 1 | 4 | ||||||||||
3 | 4 | 1 | |||||||||||
6 | 6 | 6 | |||||||||||
3 | 4 | ||||||||||||
6 | 6 | 6 | |||||||||||
Fourth Qualifier
First Round | Qualifying Competition | ||||||||||||
4 | 6 | 6 | |||||||||||
WC | 2 | 4 | |||||||||||
4 | 6 | 7 | 5 | ||||||||||
5 | 7 | 6 | 7 | ||||||||||
WC | 1 | 4 | |||||||||||
5 | 6 | 6 | |||||||||||
gollark: <#426116061415342080> is probably the right place for meme stuff?
gollark: Hmm, it cuts it off a bit.
gollark: =tex \frac{\left( x-1\right)\cdot-1}{120}\cdot\left( x-2\right)\cdot\left( x-3\right)\cdot\left( x-4\right)\cdot\left( x-5\right)- x\cdot\left( x-1\right)\cdot\left( x-2\right)\cdot\left( x-3\right)\cdot\left( x-5\right)+\frac{ x}{24}\cdot\left( x-2\right)\cdot\left( x-3\right)\cdot\left( x-4\right)\cdot\left( x-5\right)+\frac{ x\cdot-1}{6}\cdot\left( x-1\right)\cdot\left( x-3\right)\cdot\left( x-4\right)\cdot\left( x-5\right)+\frac{ x}{2}\cdot\left( x-1\right)\cdot\left( x-2\right)\cdot\left( x-4\right)\cdot\left( x-5\right)+ x\cdot\left( x-1\right)\cdot\left( x-2\right)\cdot\left( x-3\right)\cdot\left( x-4\right)
gollark: =tex why_would^you_do^that
gollark: If it asks to simplify it, you want the one with fewer terms, so the + 11x one.
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.