1983 Fischer-Grand Prix – Singles

Brian Gottfried was the defending champion and won in the final 62, 63, 75 against Mel Purcell.

Singles
1983 Fischer-Grand Prix
Champion Brian Gottfried
Runner-up Mel Purcell
Final score62, 63, 75

Seeds

  1. Brian Gottfried (Champion)
  2. Tomáš Šmíd (First Round)
  3. Wojciech Fibak (First Round)
  4. Anders Järryd (Semifinals)
  5. Mel Purcell (Final)
  6. Stefan Simonsson (Second Round)
  7. Mark Dickson (Quarterfinals)
  8. Eric Korita (Quarterfinals)

Draw

Key

Final

Semifinals Final
            
5 Brian Gottfried 1 3
  Stefan Edberg 3 4
1 Brian Gottfried 6 6 7    
5 Mel Purcell 2 3 5    
4 Anders Järryd 5 1
5 Mel Purcell 7 6

Section 1

First Round Second Round Quarterfinals Semifinals
1 B Gottfried 6 6  
  H Simonsson 4 2   1 B Gottfried 6 7  
  T Wilkison 6 4 6   T Wilkison 3 5  
  R Stadler 1 6 3 1 B Gottfried 6 4 6
  M Schapers 7 7     M Schapers 2 6 3
  S Smith 5 5     M Schapers 6 6  
  M Westphal 7 4 5 6 S Simonsson 1 4  
6 S Simonsson 5 6 7 1 B Gottfried 6 6  
3 W Fibak 4 3 r   S Edberg 3 4  
  S Edberg 6 4     S Edberg 6 6  
  D Visser 6 4     M Hocevar 4 4  
  M Hocevar 7 6     S Edberg 6 6  
Q B Levine 4 6   8 E Korita 4 1  
  B Pils 6 7   Q B Pils 3 5  
  M Doyle 1 1   8 E Korita 6 7  
8 E Korita 6 6  

Section 2

First Round Second Round Quarterfinals Semifinals
7 M Dickson 6 6  
  N Saviano 1 0   7 M Dickson 7 6  
  P Složil 7 3 2   B Mitton 6 1  
  B Mitton 6 6 6 7 M Dickson 6 6 1
Q J Svensson 4 6 6 4 A Järryd 2 7 6
  E Fromm 6 3 1 Q J Svensson 7 5 2
  E Iskersky 1 6 1 4 A Järryd 6 7 6
4 A Järryd 6 3 6 4 A Järryd 5 1  
5 M Purcell 7 6   5 M Purcell 7 6  
  F Segărceanu 6 0   5 M Purcell 6 6  
  J Borowiak 3 3     S Lipton 2 1  
  S Lipton 6 6   5 M Purcell 6 2 6
  P Feigl 6 6     P Feigl 4 6 1
  J Becka 2 0     P Feigl 6 6  
Q M Ostoja 2 6 6 Q M Ostoja 4 3  
2 T Šmíd 6 4 3
gollark: 750GB.
gollark: Wow, apparently my backups are almost 100TB in size before compression and deduplication.
gollark: What good design.
gollark: Anyway, Pi is algebraic because sin/cos can be written as polynomials, and infinite things are* the same as finite ones.
gollark: It's a good idea because I only have integers, actually.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.