50,000
50,000 (fifty thousand) is the natural number that comes after 49,999 and before 50,001.
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | fifty thousand | |||
Ordinal | 50000th (fifty thousandth) | |||
Factorization | 24 × 55 | |||
Greek numeral | ||||
Roman numeral | L | |||
Unicode symbol(s) | ↇ | |||
Binary | 11000011010100002 | |||
Ternary | 21121202123 | |||
Octal | 1415208 | |||
Duodecimal | 24B2812 | |||
Hexadecimal | C35016 |
Selected numbers in the range 50,001–59,999
50,001 to 50,999
- 50,069 – 11 + 22 + 33 + 44 + 55 + 66
- 50,400 – highly composite number[1]
- 50,625 – 154, smallest fourth power that can be expressed as the sum of only five distinct fourth powers, palindromic in base 14 (1464114)
- 50,653 – 373, palindromic in base 6 (10303016)
51,000 to 51,999
- 51,076 – 2262, palindromic in base 15 (1020115)
- 51,641 – Markov number[2]
- 51,984 – 2282 = 373 + 113. the smallest square to the sum of only five distinct fourth powers.
52,000 to 52,999
- 52,488 – 3-smooth number
- 52,633 – Carmichael number[3]
53,000 to 53,999
- 53,016 – pentagonal pyramidal number
- 53,361 – sum of the cubes of the first 21 positive integers
54,000 to 54,999
- 54,205 – Zeisel number[4]
- 54,748 – narcissistic number[5]
- 54,872 – 383, palindromic in base 9 (832389)
- 54,901 – chiliagonal number[6]
55,000 to 55,999
- 55,296 – 3-smooth number
- 55,440 – superior highly composite number;[7] colossally abundant number[8]
- 55,459 – one of five remaining Seventeen or Bust numbers in the Sierpinski problem
- 55,555 – repdigit
- 55,860 – harmonic divisor number[9]
- 55,987 – repunit prime in base 6
56,000 to 56,999
- 56,011 – Wedderburn-Etherington number[10]
- 56,092 – the number of groups of order 256, see
- 56,169 – 2372, palindromic in octal (155518)
- 56,448 – pentagonal pyramidal number
57,000 to 57,999
- 57,121 – 2392, palindromic in base 14 (16B6114)
58,000 to 58,999
- 58,081 – 2412, palindromic in base 15 (1232115)
- 58,367 – smallest integer that cannot be expressed as a sum of fewer than 1079 tenth powers
- 58,786 – Catalan number[11]
59,000 to 59,999
- 59,049 – 310, 95
- 59,081 – Zeisel number[4]
- 59,319 – 393
- 59,536 – 2442, palindromic in base 11 (4080411)
gollark: So if you were, for whatever reason, breeding nebulae with xenowyrms, then I think the biome of the parent would matter.
gollark: ``` Q: What are the mechanics of xenowyrm breeding?A: A pair with a xeno parent can breed: an egg of a non-xeno parent, a xeno like one of the xeno parent/s, a xeno based off the biome of a non-xeno parent (ie a volcanic parent can produce a pyro xenowyrm), or a random xenowyrm (when purebreeding or breeding to a dragon without a specific biome location, ie its biome is listed as "cave"). ```
gollark: https://forums.dragcave.net/topic/48-frequently-asked-questions/?tab=comments#comment-4319275
gollark: Please wait, getting citation...
gollark: Different xenowyrm types, too; they breed weirdly.
References
- "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A005188 : Armstrong (or Plus Perfect, or narcissistic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A195163 : 1000-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
- "Sloane's A00108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-16.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.