Sawtooth

A sawtooth (plural: sawtooths[note 1]) is a finite pattern whose population grows without bound but does not tend to infinity. In other words, it is a pattern with population that reaches new heights infinitely often, but also infinitely often drops below some fixed value. Their name comes from the fact that their plot of population versus generation number looks roughly like an ever-increasing sawtooth graph.

A plot of population versus generation number for sawtooth 260

The first sawtooth was constructed by Dean Hickerson in April 1991 by using a loaf tractor beam (a technique that was also used in the construction of sawtooth 633). The least infinitely repeating population of any known sawtooth is 177, attained by Sawtooth 177; the smallest bounding box of any known sawtooth is 62×56, attained by a variant of the same pattern, Sawtooth 195.[1].

Expansion factor

The expansion factor of a sawtooth is the limit of the ratio of successive heights (or equivalently, widths) of the "teeth" in plots of population versus generation number. Some sawtooths do not have an expansion factor under its standard definition because they have growth that is not exactly exponentially-spaced (see parabolic sawtooth and sawtooth 1163).

gollark: Why do you have dichotomy mode on?
gollark: Why do you have Hitler mode on?
gollark: Type OFF into the ON button in Morse code.
gollark: Hold the NO button at the same time as the ON one while booting it and select the desired boot option in the manual.
gollark: No.

See also

Notes

  1. The term "sawteeth" is not in common use.

References

  1. thunk (October 31, 2015). "Re: Smaller sawtooth". Retrieved on October 31, 2015.
This article is issued from Conwaylife. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.