Infinite glider hotel

The infinite glider hotel is a pattern that was found by David Bell on October 9, 1992 in which two pairs of Corderships pull apart in such a way that there is an ever-lengthening glider track between them. Another glider is injected into the track every 128 generations. The number of gliders in the track therefore increases without limit.[1]

Infinite glider hotel
<html><div class="rle"><div class="codebox"><div style="display:none;"><code></html>x = 566, y = 572, rule = B3/S23 13b2o$13b2o6$13b3o2$13bobo$12b5o$11b2o3b2o$11b2o3b2o4$2bo6bo$b2o6b2o$ 3o6b3o$b2o6b2o$2bo6bo165$301bo2$297bo7bo$291b3o2bo8bo$291b3o2bo3b2o4bo $289bo2b2o2bo6bobo$289bobo10b2obo$289b3o$280b2o18bo$280b2o$316bo$314b 2ob2o2$314b2o$314bo$316bo3bo$272b2o38bo3bo$272b2o$306bo$305bobo10bo$ 305bobo7bobo$304bo2bo6bo$304bobo8b2o$303bo11bobo$264b2o37b2o10bobo$ 264b2o38bo9bob2o$313b2ob2o9bo$316b3o$323bo7bo$306bo15bo8bo$272b3o30bob o14bo3b2o4bo$305bo16bo6bobo$270bo34bo22b2obo$269b2o3bo30bo$270bobo53bo 22b2o$273b3o28bo$273bo29b3ob2o38bo3bo$301b2ob3o39bo$273b2o28bo41bo7bo$ 272b2o75bo4bo$273bo70bo4bobobo$272b2o32bo37bo8bo$273b2o30bob2o35bob2o 4bo$283bo20b2obob2o33b3ob2obo$276bo3bo2bobo2bo19bo36b2ob3o$276b5ob2o4b o21bob2o4b2o12b2o$277bobo4bo3bo25bob2o8b2o4b2o$311b4obob3o5b2o$284b3o 28bo$285bo2$370bo$368b2obo$324b2o41bo$318b2o4b2o40bo2bo3bo$318b2o45bo 9bo$240b2o56b3o64b2o2b2o4bo$239b2o124b2o$241bo21b2o31bo70bo5bo$262bobo 30b2o3bo64b3o4bo$252b2o7bo13bobo18bobo66b2o4bo3b2o$252b2o7bo2bo6b2o2bo 2bo20b3o14b2o48b4o$261bo8bobo5b2o19bo10b2o4b2o39bobo13bo3bo$262bobo3bo 3bo3bo3b2o4b2o22b2o45b3o12bo$263b2o2b2ob3o5b2o6b2o11b2o57b2o11bo7bo$ 270b2o3bo2bo19b2o75bo4bo$275bobo21bo70bo4bobobo$298b2o56bo13bo8bo$299b 2o55bobo11bob2o4bo$261bo94b3o11b3ob2obo$261bobo38b2o51bo15b2ob3o$238bo 22b2o39b2o21bobo27b5o$236bobo85b2ob2o12bo$227bo7bobo86b2obo12bobo$226b 2o6bo2bo11b2o72bo17bo$225b2o4b2o2bobo11b2o73bo18bo$215b2o7b3o4b2o3bobo 15bo69bo18b2o$215b2o8b2o4b2o5bo14bo87bo2bo$226b2o25b3o85b3o$227bo107bo 6bo$239bo94b3o$234b4o2bo9b4o26b4o84b2o$236bob3o8bo3bo25bo3bo50b3o29b2o 2bo5bo$237bo15bo29bo5b3o39b2ob2o30bo2b3o4bo$234bo14bo2bo26bo2bo6bo43bo 32bo4bo4bo$237bo52bo76b5o$234bo134b2o2$227bo$227b2o$226bobo$370b2o$ 214b2o27bo126b2o$213bobo26b2o$203b2o7bo6b2o4bo16bobo$203b2o7bo2bo2bo2b o2bobo26bo$212bo6b3obob2o25bobo$213bobo6b2ob2o14bo8b2o3bo9b2o84bobo$ 214b2o7bob2o14b4o5b2o3bo9b2o83b2ob2o$224bobo15b4o4b2o3bo94b2obo8b2o$ 225bo16bo2bo6bobo94bo12b2o$242b4o7bo72b2o22bo$241b4o80bobo22bo$241bo 82b3o$324b2o$324b2o$325bobo$326bo27b2o$354b2o2$323b2o3b2o$323b2o3b2o2$ 319b3o3b3o$319bo5b3o$203b2o115bo5bo$203b2o113bo$318b2o$317bobo3$208bo 114b3o$208bo114b3o$195b2o12bo112bo3bo$195b2o8bob2o101b2o$204b2ob2o102b 2o8b2o3b2o$205bobo102bo5$187b2o114bo$187b2o114b2o$302bobo2$290b2o31b2o $289bobo31b2o$188b2o89b2o7bo6b2o4bo$187b5o87b2o7bo2bo2bo2bo2bobo$182bo 4bo4bo32bo62bo6b3obob2o$182bo4b3o2bo30b2ob2o61bobo6b2ob2o10b2o$182bo5b o2b2o29b3o65b2o7bob2o10b2o$189b2o109bobo$222b3o76bo$216bo6bo$215b3o$ 214bo2bo$214b2o18bo$215bo18bo$217bo17bo$216bobo12bob2o$217bo12b2ob2o$ 199b5o27bobo21b2o$182b3ob2o15bo51b2o$181bob2ob3o11b3o$180bo4b2obo11bob o55b2o$179bo8bo13bo56b2o$179bobobo4bo70bo$178bo4bo75b2o$179bo7bo11b2o 57b2o$186bo12b3o45b2o$181bo3bo13bobo39b2o4b2o10bo$189b4o48b2o14b3o$ 182b2o3bo4b2o66bobo$186bo4b3o64bo3b2o83bo$185bo5bo70bo85bo$192b2o152b 3o$183bo4b2o2b2o64b3o$183bo9bo45b2o$185bo3bo2bo40b2o4b2o$191bo41b2o$ 187bob2o$188bo2$273bo$243bo28b3o$231b2o5b3obob4o$225b2o4b2o8b2obo25bo 3bo4bobo$225b2o12b2o4b2obo21bo4b2ob5o$208b3ob2o36bo19bo2bobo2bo3bo$ 207bob2ob3o33b2obob2o20bo$206bo4b2obo35b2obo30b2o$205bo8bo37bo32b2o$ 205bobobo4bo70bo$204bo4bo75b2o$205bo7bo41bo28b2o$212bo39b3ob2o$207bo3b o38b2ob3o29bo$254bo28b3o$208b2o22bo53bobo$253bo30bo3b2o$227bob2o22bo 34bo$227bobo6bo16bo$226bo4b2o3bo14bobo30b3o$227bo8bo15bo$227bo7bo$240b 3o$231bo9b2ob2o$241b2obo9bo38b2o$241bobo10b2o37b2o$241bobo11bo$242b2o 8bobo$244bo6bo2bo$241bobo7bobo$240bo10bobo$252bo$285b2o$242bo3bo38b2o$ 238bo3bo$244bo$243b2o2$240b2ob2o$242bo$277b2o$258bo18b2o$267b3o$253bob 2o10bobo$253bobo6bo2b2o2bo$252bo4b2o3bo2b3o$253bo8bo2b3o$253bo7bo2$ 257bo144$558bo4bo$556b2ob4ob2o$552bo5bo4bo$551bo$551bo3$549b2o3b2o$ 550b5o$551b3o$552bo8$552b2o$552b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]] <nowiki></nowiki> <html></code></div></div><canvas width="200" height="300" style="margin-left:1px;"><noscript></html> <html></noscript></canvas></div></html>
Pattern type Miscellaneous
Number of cells 1278
Bounding box 566×572
Discovered by David Bell
Year of discovery 1992

The tricky part of its construction is that even though all the previously injected gliders are repeatedly flying through the injection point, that point is guaranteed to be empty when it is time for the next glider to be injected.

Its name derives from the classic paradox of Hilbert's "infinite hotel" in which a hotel with an infinite number of rooms has room for more guests even if it is already full, simply by shuffling the old guests around.

Modifications

On May 29, 2001, Bell created another infinite glider hotel also based on receding pairs of Corderships. Much like the original hotel, an additional glider is injected into the glider track once every 128 generations. The main difference between the two hotels is that the 2001 version is much more compact, having an initial bounding box of only 274 × 206.

On January 28, 2015 Ivan Fomichev assembled an even more compact version using a stable glider stream merger, found by him on October 7, 2013.[2]

Bell's 2001 modification of the infinite glider hotel
Download RLE: click here
A slightly smaller version of the 2001 infinite glider hotel
Download RLE: click here
An even smaller version of the 2001 infinite glider hotel
Download RLE: click here
An infinite glider hotel that used the 2-engine Cordership
Download RLE: click here

Videos

<iframe src='//www.youtube.com/embed/m2iHZpqIMfk?' width='300' height='169' frameborder='0' allowfullscreen='true'></iframe>
The infinite glider hotel evolving over 425,000 generations
gollark: Macron is owned by certain recursive [HG]Tech™ intellectual property holding shell companies.
gollark: Great!
gollark: Become 819919191 rotating apioforms.
gollark: Hi³Boi¡
gollark: It says so.

See also

References

  1. Alan Hensel's lifebc.zip pattern collection.
  2. Ivan Fomichev (January 28, 2015). "Re: Thread For Your Accidental Discoveries". Retrieved on January 28, 2015.
This article is issued from Conwaylife. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.