C++11, 28s
This also uses a dynamic programming approach based on rows. It took 28 seconds to run with argument 13 for me. My favorite trick is the next
function which uses some bit bashing for finding the lexicographically next row arrangement satisfying a mask and the no-3-in-a-row rule.
Instructions
- Install the latest MinGW-w64 with SEH and Posix threads
- Compile the program with
g++ -std=c++11 -march=native -O3 <filename>.cpp -o <executable name>
- Run with
<executable name> <n>
#include <vector>
#include <stddef.h>
#include <iostream>
#include <string>
#ifdef _MSC_VER
#include <intrin.h>
#define popcount32 _mm_popcnt_u32
#else
#define popcount32 __builtin_popcount
#endif
using std::vector;
using row = uint32_t;
using xcount = uint8_t;
uint16_t rev16(uint16_t x) { // slow
static const uint8_t revbyte[] {0,128,64,192,32,160,96,224,16,144,80,208,48,176,112,240,8,136,72,200,40,168,104,232,24,152,88,216,56,184,120,248,4,132,68,196,36,164,100,228,20,148,84,212,52,180,116,244,12,140,76,204,44,172,108,236,28,156,92,220,60,188,124,252,2,130,66,194,34,162,98,226,18,146,82,210,50,178,114,242,10,138,74,202,42,170,106,234,26,154,90,218,58,186,122,250,6,134,70,198,38,166,102,230,22,150,86,214,54,182,118,246,14,142,78,206,46,174,110,238,30,158,94,222,62,190,126,254,1,129,65,193,33,161,97,225,17,145,81,209,49,177,113,241,9,137,73,201,41,169,105,233,25,153,89,217,57,185,121,249,5,133,69,197,37,165,101,229,21,149,85,213,53,181,117,245,13,141,77,205,45,173,109,237,29,157,93,221,61,189,125,253,3,131,67,195,35,163,99,227,19,147,83,211,51,179,115,243,11,139,75,203,43,171,107,235,27,155,91,219,59,187,123,251,7,135,71,199,39,167,103,231,23,151,87,215,55,183,119,247,15,143,79,207,47,175,111,239,31,159,95,223,63,191,127,255};
return uint16_t(revbyte[x >> 8]) | uint16_t(revbyte[x & 0xFF]) << 8;
}
// returns the next number after r that does not overlap the mask or have three 1's in a row
row next(row r, uint32_t m) {
m |= r >> 1 & r >> 2;
uint32_t x = (r | m) + 1;
uint32_t carry = x & -x;
return (r | carry) & -carry;
}
template<typename T, typename U> void maxequals(T& m, U v) {
if (v > m)
m = v;
}
struct tictac {
const int n;
vector<row> rows;
size_t nonpal, nrows_c;
vector<int> irow;
vector<row> revrows;
tictac(int n) : n(n) { }
row reverse(row r) {
return rev16(r) >> (16 - n);
}
vector<int> sols_1row() {
vector<int> v(1 << n);
for (uint32_t m = 0; !(m >> n); m++) {
auto m2 = m;
int n0 = 0;
int score = 0;
for (int i = n; i--; m2 >>= 1) {
if (m2 & 1) {
n0 = 0;
} else {
if (++n0 % 3)
score++;
}
}
v[m] = score;
}
return v;
}
void gen_rows() {
vector<row> pals;
for (row r = 0; !(r >> n); r = next(r, 0)) {
row rrev = reverse(r);
if (r < rrev) {
rows.push_back(r);
} else if (r == rrev) {
pals.push_back(r);
}
}
nonpal = rows.size();
for (row r : pals) {
rows.push_back(r);
}
nrows_c = rows.size();
for (int i = 0; i < nonpal; i++) {
rows.push_back(reverse(rows[i]));
}
irow.resize(1 << n);
for (int i = 0; i < rows.size(); i++) {
irow[rows[i]] = i;
}
revrows.resize(1 << n);
for (row r = 0; !(r >> n); r++) {
revrows[r] = reverse(r);
}
}
// find banned locations for 1's given 2 above rows
uint32_t mask(row a, row b) {
return ((a & b) | (a >> 1 & b) >> 1 | (a << 1 & b) << 1) /*& ((1 << n) - 1)*/;
}
int calc() {
if (n < 3) {
return n * n;
}
gen_rows();
int tdim = n < 5 ? n : (n + 3) / 2;
size_t nrows = rows.size();
xcount* t = new xcount[2 * nrows * nrows_c]{};
#define tb(nr, i, j) t[nrows * (nrows_c * ((nr) & 1) + (i)) + (j)]
// find optimal solutions given 2 rows for n x k grids where 3 <= k <= ceil(n/2) + 1
{
auto s1 = sols_1row();
for (int i = 0; i < nrows_c; i++) {
row a = rows[i];
for (int j = 0; j < nrows; j++) {
row b = rows[j];
uint32_t m = mask(b, a) & ~(1 << n);
tb(3, i, j) = s1[m] + popcount32(a << 16 | b);
}
}
}
for (int r = 4; r <= tdim; r++) {
for (int i = 0; i < nrows_c; i++) {
row a = rows[i];
for (int j = 0; j < nrows; j++) {
row b = rows[j];
bool rev = j >= nrows_c;
auto cj = rev ? j - nrows_c : j;
uint32_t m = mask(a, b);
for (row c = 0; !(c >> n); c = next(c, m)) {
row cc = rev ? revrows[c] : c;
int count = tb(r - 1, i, j) + popcount32(c);
maxequals(tb(r, cj, irow[cc]), count);
}
}
}
}
int ans = 0;
if (tdim == n) { // small sizes
for (int i = 0; i < nrows_c; i++) {
for (int j = 0; j < nrows; j++) {
maxequals(ans, tb(n, i, j));
}
}
} else {
int tdim2 = n + 2 - tdim;
// get final answer by joining two halves' solutions down the middle
for (int i = 0; i < nrows_c; i++) {
int apc = popcount32(rows[i]);
for (int j = 0; j < nrows; j++) {
row b = rows[j];
int top = tb(tdim2, i, j);
int bottom = j < nrows_c ? tb(tdim, j, i) : tb(tdim, j - nrows_c, i < nonpal ? i + nrows_c : i);
maxequals(ans, top + bottom - apc - popcount32(b));
}
}
}
delete[] t;
return ans;
}
};
int main(int argc, char** argv) {
int n;
if (argc < 2 || (n = std::stoi(argv[1])) < 0 || n > 16) {
return 1;
}
std::cout << tictac{ n }.calc() << '\n';
return 0;
}
Related and related. – Adnan – 2016-03-30T17:56:28.253
Isn't this just a dupe of the second question as as far as I can tell, you've just changed the winning condition?
– Blue – 2016-03-30T18:54:01.0671@muddyfish Altough the challenge itself look the same, I can ensure you that the approach for this challenge is very different from my other challenge. – Adnan – 2016-03-30T19:05:43.830
3
@muddyfish Relevant meta discussion. "Just changing the winning condition" can be a substantial change for a challenge. While it doesn't make sense to post a [tag:code-golf], [tag:fastest-algorithm] and [tag:fastest-code] for every possible challenge, there are some cases, where exploring a problem from two angles can add a lot of value to the site. I think this is such a case.
– Martin Ender – 2016-03-30T19:11:19.660Related Math.SE post by our Nathan Merrill. – Martin Ender – 2016-03-30T19:12:07.867
Can you give the specs of the testing machine? Also, do you plan to allow multithreading? (I would usually prefer not as it just adds tedium). – feersum – 2016-03-30T22:06:13.897
@feersum The testing machine has a I7 core processor and 8GB ram. I have Windows 8 as OS. Multithreading is not allowed. – Adnan – 2016-03-31T12:25:59.053
1Wonderful challenge! (+1) – None – 2016-04-06T15:50:29.243
@Lembik Thank you very much :) – Adnan – 2016-04-06T16:15:34.947